|
import os
|
|
from collections.abc import Generator
|
|
|
|
import pytest
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel
|
|
|
|
|
|
def test_validate_credentials():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
with pytest.raises(CredentialsValidateFailedError):
|
|
model.validate_credentials(
|
|
model='meta.llama2-13b-chat-v1',
|
|
credentials={
|
|
'anthropic_api_key': 'invalid_key'
|
|
}
|
|
)
|
|
|
|
model.validate_credentials(
|
|
model='meta.llama2-13b-chat-v1',
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
}
|
|
)
|
|
|
|
def test_invoke_model():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model='meta.llama2-13b-chat-v1',
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content='You are a helpful AI assistant.',
|
|
),
|
|
UserPromptMessage(
|
|
content='Hello World!'
|
|
)
|
|
],
|
|
model_parameters={
|
|
'temperature': 0.0,
|
|
'top_p': 1.0,
|
|
'max_tokens_to_sample': 10
|
|
},
|
|
stop=['How'],
|
|
stream=False,
|
|
user="abc-123"
|
|
)
|
|
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.message.content) > 0
|
|
|
|
def test_invoke_stream_model():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
response = model.invoke(
|
|
model='meta.llama2-13b-chat-v1',
|
|
credentials={
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
},
|
|
prompt_messages=[
|
|
SystemPromptMessage(
|
|
content='You are a helpful AI assistant.',
|
|
),
|
|
UserPromptMessage(
|
|
content='Hello World!'
|
|
)
|
|
],
|
|
model_parameters={
|
|
'temperature': 0.0,
|
|
'max_tokens_to_sample': 100
|
|
},
|
|
stream=True,
|
|
user="abc-123"
|
|
)
|
|
|
|
assert isinstance(response, Generator)
|
|
|
|
for chunk in response:
|
|
print(chunk)
|
|
assert isinstance(chunk, LLMResultChunk)
|
|
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
|
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
|
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
|
|
|
|
|
def test_get_num_tokens():
|
|
model = BedrockLargeLanguageModel()
|
|
|
|
num_tokens = model.get_num_tokens(
|
|
model='meta.llama2-13b-chat-v1',
|
|
credentials = {
|
|
"aws_region": os.getenv("AWS_REGION"),
|
|
"aws_access_key": os.getenv("AWS_ACCESS_KEY"),
|
|
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
},
|
|
messages=[
|
|
SystemPromptMessage(
|
|
content='You are a helpful AI assistant.',
|
|
),
|
|
UserPromptMessage(
|
|
content='Hello World!'
|
|
)
|
|
]
|
|
)
|
|
|
|
assert num_tokens == 18
|
|
|