kikuepi's picture
Upload 4913 files
4304c6d verified
import json
import os
from unittest.mock import MagicMock
import pytest
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers import ModelProviderFactory
from core.workflow.entities.node_entities import SystemVariable
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.nodes.base_node import UserFrom
from core.workflow.nodes.llm.llm_node import LLMNode
from extensions.ext_database import db
from models.provider import ProviderType
from models.workflow import WorkflowNodeExecutionStatus
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_execute_llm(setup_openai_mock):
node = LLMNode(
tenant_id='1',
app_id='1',
workflow_id='1',
user_id='1',
user_from=UserFrom.ACCOUNT,
config={
'id': 'llm',
'data': {
'title': '123',
'type': 'llm',
'model': {
'provider': 'openai',
'name': 'gpt-3.5-turbo',
'mode': 'chat',
'completion_params': {}
},
'prompt_template': [
{
'role': 'system',
'text': 'you are a helpful assistant.\ntoday\'s weather is {{#abc.output#}}.'
},
{
'role': 'user',
'text': '{{#sys.query#}}'
}
],
'memory': None,
'context': {
'enabled': False
},
'vision': {
'enabled': False
}
}
}
)
# construct variable pool
pool = VariablePool(system_variables={
SystemVariable.QUERY: 'what\'s the weather today?',
SystemVariable.FILES: [],
SystemVariable.CONVERSATION_ID: 'abababa',
SystemVariable.USER_ID: 'aaa'
}, user_inputs={})
pool.append_variable(node_id='abc', variable_key_list=['output'], value='sunny')
credentials = {
'openai_api_key': os.environ.get('OPENAI_API_KEY')
}
provider_instance = ModelProviderFactory().get_provider_instance('openai')
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id='1',
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(
enabled=False
),
custom_configuration=CustomConfiguration(
provider=CustomProviderConfiguration(
credentials=credentials
)
)
),
provider_instance=provider_instance,
model_type_instance=model_type_instance
)
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model='gpt-3.5-turbo')
model_config = ModelConfigWithCredentialsEntity(
model='gpt-3.5-turbo',
provider='openai',
mode='chat',
credentials=credentials,
parameters={},
model_schema=model_type_instance.get_model_schema('gpt-3.5-turbo'),
provider_model_bundle=provider_model_bundle
)
# Mock db.session.close()
db.session.close = MagicMock()
node._fetch_model_config = MagicMock(return_value=tuple([model_instance, model_config]))
# execute node
result = node.run(pool)
assert result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert result.outputs['text'] is not None
assert result.outputs['usage']['total_tokens'] > 0
@pytest.mark.parametrize('setup_code_executor_mock', [['none']], indirect=True)
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
"""
Test execute LLM node with jinja2
"""
node = LLMNode(
tenant_id='1',
app_id='1',
workflow_id='1',
user_id='1',
user_from=UserFrom.ACCOUNT,
config={
'id': 'llm',
'data': {
'title': '123',
'type': 'llm',
'model': {
'provider': 'openai',
'name': 'gpt-3.5-turbo',
'mode': 'chat',
'completion_params': {}
},
'prompt_config': {
'jinja2_variables': [{
'variable': 'sys_query',
'value_selector': ['sys', 'query']
}, {
'variable': 'output',
'value_selector': ['abc', 'output']
}]
},
'prompt_template': [
{
'role': 'system',
'text': 'you are a helpful assistant.\ntoday\'s weather is {{#abc.output#}}',
'jinja2_text': 'you are a helpful assistant.\ntoday\'s weather is {{output}}.',
'edition_type': 'jinja2'
},
{
'role': 'user',
'text': '{{#sys.query#}}',
'jinja2_text': '{{sys_query}}',
'edition_type': 'basic'
}
],
'memory': None,
'context': {
'enabled': False
},
'vision': {
'enabled': False
}
}
}
)
# construct variable pool
pool = VariablePool(system_variables={
SystemVariable.QUERY: 'what\'s the weather today?',
SystemVariable.FILES: [],
SystemVariable.CONVERSATION_ID: 'abababa',
SystemVariable.USER_ID: 'aaa'
}, user_inputs={})
pool.append_variable(node_id='abc', variable_key_list=['output'], value='sunny')
credentials = {
'openai_api_key': os.environ.get('OPENAI_API_KEY')
}
provider_instance = ModelProviderFactory().get_provider_instance('openai')
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id='1',
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(
enabled=False
),
custom_configuration=CustomConfiguration(
provider=CustomProviderConfiguration(
credentials=credentials
)
)
),
provider_instance=provider_instance,
model_type_instance=model_type_instance
)
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model='gpt-3.5-turbo')
model_config = ModelConfigWithCredentialsEntity(
model='gpt-3.5-turbo',
provider='openai',
mode='chat',
credentials=credentials,
parameters={},
model_schema=model_type_instance.get_model_schema('gpt-3.5-turbo'),
provider_model_bundle=provider_model_bundle
)
# Mock db.session.close()
db.session.close = MagicMock()
node._fetch_model_config = MagicMock(return_value=tuple([model_instance, model_config]))
# execute node
result = node.run(pool)
assert result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert 'sunny' in json.dumps(result.process_data)
assert 'what\'s the weather today?' in json.dumps(result.process_data)