import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, PromptMessageTool, SystemPromptMessage, TextPromptMessageContent, UserPromptMessage, ) from core.model_runtime.entities.model_entities import AIModelEntity from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock def test_predefined_models(): model = ChatGLMLargeLanguageModel() model_schemas = model.predefined_models() assert len(model_schemas) >= 1 assert isinstance(model_schemas[0], AIModelEntity) @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True) def test_validate_credentials_for_chat_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='chatglm2-6b', credentials={ 'api_base': 'invalid_key' } ) model.validate_credentials( model='chatglm2-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') } ) @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True) def test_invoke_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model='chatglm2-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ], model_parameters={ 'temperature': 0.7, 'top_p': 1.0, }, stop=['you'], user="abc-123", stream=False ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True) def test_invoke_stream_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model='chatglm2-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ], model_parameters={ 'temperature': 0.7, 'top_p': 1.0, }, stop=['you'], stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True) def test_invoke_stream_model_with_functions(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model='chatglm3-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ SystemPromptMessage( content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。' ), UserPromptMessage( content='波士顿天气如何?' ) ], model_parameters={ 'temperature': 0, 'top_p': 1.0, }, stop=['you'], user='abc-123', stream=True, tools=[ PromptMessageTool( name='get_current_weather', description='Get the current weather in a given location', parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": [ "location" ] } ) ] ) assert isinstance(response, Generator) call: LLMResultChunk = None chunks = [] for chunk in response: chunks.append(chunk) assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: call = chunk break assert call is not None assert call.delta.message.tool_calls[0].function.name == 'get_current_weather' @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True) def test_invoke_model_with_functions(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model='chatglm3-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ UserPromptMessage( content='What is the weather like in San Francisco?' ) ], model_parameters={ 'temperature': 0.7, 'top_p': 1.0, }, stop=['you'], user='abc-123', stream=False, tools=[ PromptMessageTool( name='get_current_weather', description='Get the current weather in a given location', parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "c", "f" ] } }, "required": [ "location" ] } ) ] ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 assert response.message.tool_calls[0].function.name == 'get_current_weather' def test_get_num_tokens(): model = ChatGLMLargeLanguageModel() num_tokens = model.get_num_tokens( model='chatglm2-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ], tools=[ PromptMessageTool( name='get_current_weather', description='Get the current weather in a given location', parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "c", "f" ] } }, "required": [ "location" ] } ) ] ) assert isinstance(num_tokens, int) assert num_tokens == 77 num_tokens = model.get_num_tokens( model='chatglm2-6b', credentials={ 'api_base': os.environ.get('CHATGLM_API_BASE') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ], ) assert isinstance(num_tokens, int) assert num_tokens == 21