import gradio as gr import PyPDF2 import os import openai import re import plotly.graph_objects as go class ResumeAnalyser: def __init__(self): pass def extract_text_from_file(self,file_path): # Get the file extension file_extension = os.path.splitext(file_path)[1] if file_extension == '.pdf': with open(file_path, 'rb') as file: # Create a PDF file reader object reader = PyPDF2.PdfFileReader(file) # Create an empty string to hold the extracted text extracted_text = "" # Loop through each page in the PDF and extract the text for page_number in range(reader.getNumPages()): page = reader.getPage(page_number) extracted_text += page.extractText() return extracted_text elif file_extension == '.txt': with open(file_path, 'r') as file: # Just read the entire contents of the text file return file.read() else: return "Unsupported file type" def responce_from_ai(self,textjd, textcv): resume = self.extract_text_from_file(textjd) job_description = self.extract_text_from_file(textcv) response = openai.Completion.create( engine="text-davinci-003", prompt=f""" Given the job description and the resume, assess the matching percentage to 100 and if 100 percentage not matched mention the remaining percentage with reason. **Job Description:**{job_description}**Resume:**{resume} **Detailed Analysis:** the result should be in this format: Matched Percentage: [matching percentage]. Reason : [Mention Reason and keys from job_description and resume get this matched percentage.]. Skills To Improve : [Mention the skills How to improve and get 100 percentage job description matching]. Keywords : [matched key words from {job_description} and {resume}]. """, temperature=0, max_tokens=100, n=1, stop=None, ) generated_text = response.choices[0].text.strip() print(generated_text) return generated_text def matching_percentage(self,job_description_path, resume_path): job_description_path = job_description_path.name resume_path = resume_path.name generated_text = self.responce_from_ai(job_description_path, resume_path) result = generated_text lines = result.split('\n') matched_percentage = None matched_percentage_txt = None reason = None skills_to_improve = None keywords = None for line in lines: if line.startswith('Matched Percentage:'): match = re.search(r"Matched Percentage: (\d+)%", line) if match: matched_percentage = int(match.group(1)) matched_percentage_txt = (f"Matched Percentage: {matched_percentage}%") elif line.startswith('Reason'): reason = line.split(':')[1].strip() elif line.startswith('Skills To Improve'): skills_to_improve = line.split(':')[1].strip() elif line.startswith('Keywords'): keywords = line.split(':')[1].strip() # Extract the matched percentage using regular expression # match1 = re.search(r"Matched Percentage: (\d+)%", matched_percentage) # matched_Percentage = int(match1.group(1)) # Creating a pie chart with plotly labels = ['Matched', 'Remaining'] values = [matched_percentage, 100 - matched_percentage] fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) # fig.update_layout(title='Matched Percentage') return matched_percentage_txt,reason, skills_to_improve, keywords,fig def gradio_interface(self): with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as app: gr.HTML("""