Spaces:
Runtime error
Runtime error
File size: 12,168 Bytes
61bbe53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
from annotator.util import resize_image, HWC3
def create_demo():
device = "cuda" if torch.cuda.is_available() else "cpu"
use_blip = True
use_gradio = True
# Diffusion init using diffusers.
# diffusers==0.14.0 required.
base_model_path = "stabilityai/stable-diffusion-2-1"
config_dict = OrderedDict([('SAM Pretrained(v0-1)', 'shgao/edit-anything-v0-1-1'),
('LAION Pretrained(v0-3)', 'shgao/edit-anything-v0-3'),
])
def obtain_generation_model(controlnet_path):
controlnet = ControlNetModel.from_pretrained(
controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
pipe.to(device)
return pipe
global default_controlnet_path
default_controlnet_path = config_dict['LAION Pretrained(v0-3)']
pipe = obtain_generation_model(default_controlnet_path)
# Segment-Anything init.
# pip install git+https://github.com/facebookresearch/segment-anything.git
try:
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
except ImportError:
print('segment_anything not installed')
result = subprocess.run(['pip', 'install', 'git+https://github.com/facebookresearch/segment-anything.git'], check=True)
print(f'Install segment_anything {result}')
if not os.path.exists('./models/sam_vit_h_4b8939.pth'):
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth', '-P', 'models'], check=True)
print(f'Download sam_vit_h_4b8939.pth {result}')
sam_checkpoint = "models/sam_vit_h_4b8939.pth"
model_type = "default"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
mask_generator = SamAutomaticMaskGenerator(sam)
# BLIP2 init.
if use_blip:
# need the latest transformers
# pip install git+https://github.com/huggingface/transformers.git
from transformers import AutoProcessor, Blip2ForConditionalGeneration
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
blip_model.to(device)
blip_model.to(device)
def get_blip2_text(image):
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
generated_ids = blip_model.generate(**inputs, max_new_tokens=50)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
full_img = None
# for ann in sorted_anns:
for i in range(len(sorted_anns)):
ann = anns[i]
m = ann['segmentation']
if full_img is None:
full_img = np.zeros((m.shape[0], m.shape[1], 3))
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
map[m != 0] = i + 1
color_mask = np.random.random((1, 3)).tolist()[0]
full_img[m != 0] = color_mask
full_img = full_img*255
# anno encoding from https://github.com/LUSSeg/ImageNet-S
res = np.zeros((map.shape[0], map.shape[1], 3))
res[:, :, 0] = map % 256
res[:, :, 1] = map // 256
res.astype(np.float32)
full_img = Image.fromarray(np.uint8(full_img))
return full_img, res
def get_sam_control(image):
masks = mask_generator.generate(image)
full_img, res = show_anns(masks)
return full_img, res
def process(condition_model, input_image, enable_auto_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
global default_controlnet_path
global pipe
print("To Use:", config_dict[condition_model], "Current:", default_controlnet_path)
if default_controlnet_path!=config_dict[condition_model]:
print("Change condition model to:", config_dict[condition_model])
pipe = obtain_generation_model(config_dict[condition_model])
default_controlnet_path = config_dict[condition_model]
with torch.no_grad():
if use_blip and (enable_auto_prompt or len(prompt) == 0):
print("Generating text:")
blip2_prompt = get_blip2_text(input_image)
print("Generated text:", blip2_prompt)
if len(prompt) > 0:
prompt = blip2_prompt + ',' + prompt
else:
prompt = blip2_prompt
print("All text:", prompt)
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
print("Generating SAM seg:")
# the default SAM model is trained with 1024 size.
full_segmask, detected_map = get_sam_control(
resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
print("control.shape", control.shape)
generator = torch.manual_seed(seed)
x_samples = pipe(
prompt=[prompt + ', ' + a_prompt] * num_samples,
negative_prompt=[n_prompt] * num_samples,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
height=H,
width=W,
image=control.type(torch.float16),
).images
results = [x_samples[i] for i in range(num_samples)]
return [full_segmask] + results, prompt
# disable gradio when not using GUI.
if not use_gradio:
# This part is not updated, it's just a example to use it without GUI.
condition_model = 'shgao/edit-anything-v0-1-1'
image_path = "images/sa_309398.jpg"
input_image = Image.open(image_path)
input_image = np.array(input_image, dtype=np.uint8)
prompt = ""
a_prompt = 'best quality, extremely detailed'
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
num_samples = 4
image_resolution = 512
detect_resolution = 512
ddim_steps = 100
guess_mode = False
strength = 1.0
scale = 9.0
seed = 10086
eta = 0.0
outputs, full_text = process(condition_model, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution,
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
image_list = []
input_image = resize_image(input_image, 512)
image_list.append(torch.tensor(input_image))
for i in range(len(outputs)):
each = outputs[i]
if type(each) is not np.ndarray:
each = np.array(each, dtype=np.uint8)
each = resize_image(each, 512)
print(i, each.shape)
image_list.append(torch.tensor(each))
image_list = torch.stack(image_list).permute(0, 3, 1, 2)
save_image(image_list, "sample.jpg", nrow=3,
normalize=True, value_range=(0, 255))
else:
block = gr.Blocks()
with block as demo:
with gr.Row():
gr.Markdown(
"## Generate Anything")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt (Optional)")
run_button = gr.Button(label="Run")
condition_model = gr.Dropdown(choices=list(config_dict.keys()),
value=list(config_dict.keys())[0],
label='Model',
multiselect=False)
num_samples = gr.Slider(
label="Images", minimum=1, maximum=12, value=1, step=1)
enable_auto_prompt = gr.Checkbox(label='Auto generated BLIP2 prompt', value=True)
with gr.Accordion("Advanced options", open=False):
image_resolution = gr.Slider(
label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(
label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1)
ddim_steps = gr.Slider(
label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1,
maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(
label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_text = gr.Text(label='BLIP2+Human Prompt Text')
ips = [condition_model, input_image, enable_auto_prompt, prompt, a_prompt, n_prompt, num_samples, image_resolution,
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, result_text])
return demo
if __name__ == '__main__':
demo = create_demo()
demo.queue().launch(server_name='0.0.0.0')
|