|
|
|
from torchvision.utils import save_image |
|
from PIL import Image |
|
from cldm.ddim_hacked import DDIMSampler |
|
from cldm.model import create_model, load_state_dict |
|
from pytorch_lightning import seed_everything |
|
from share import * |
|
import config |
|
|
|
import cv2 |
|
import einops |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import random |
|
import os |
|
from annotator.util import resize_image, HWC3 |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
use_blip = True |
|
use_gradio = False |
|
|
|
|
|
|
|
model = create_model('./models/cldm_v21.yaml').cpu() |
|
model.load_state_dict(load_state_dict( |
|
'models/edit-anything-ckpt-v0-1.ckpt', location='cuda')) |
|
model.to(device=device) |
|
ddim_sampler = DDIMSampler(model) |
|
|
|
|
|
|
|
|
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator |
|
|
|
sam_checkpoint = "models/sam_vit_h_4b8939.pth" |
|
model_type = "default" |
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
mask_generator = SamAutomaticMaskGenerator(sam) |
|
|
|
|
|
|
|
if use_blip: |
|
|
|
|
|
from transformers import AutoProcessor, Blip2ForConditionalGeneration |
|
|
|
processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") |
|
blip_model = Blip2ForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) |
|
blip_model.to(device) |
|
|
|
|
|
def get_blip2_text(image): |
|
inputs = processor(image, return_tensors="pt").to(device, torch.float16) |
|
generated_ids = blip_model.generate(**inputs, max_new_tokens=50) |
|
generated_text = processor.batch_decode( |
|
generated_ids, skip_special_tokens=True)[0].strip() |
|
return generated_text |
|
|
|
|
|
def show_anns(anns): |
|
if len(anns) == 0: |
|
return |
|
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) |
|
full_img = None |
|
|
|
|
|
for i in range(len(sorted_anns)): |
|
ann = anns[i] |
|
m = ann['segmentation'] |
|
if full_img is None: |
|
full_img = np.zeros((m.shape[0], m.shape[1], 3)) |
|
map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16) |
|
map[m != 0] = i + 1 |
|
color_mask = np.random.random((1, 3)).tolist()[0] |
|
full_img[m != 0] = color_mask |
|
full_img = full_img*255 |
|
|
|
res = np.zeros((map.shape[0], map.shape[1], 3)) |
|
res[:, :, 0] = map % 256 |
|
res[:, :, 1] = map // 256 |
|
res.astype(np.float32) |
|
return full_img, res |
|
|
|
|
|
def get_sam_control(image): |
|
masks = mask_generator.generate(image) |
|
full_img, res = show_anns(masks) |
|
return full_img, res |
|
|
|
|
|
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): |
|
with torch.no_grad(): |
|
if use_blip: |
|
print("Generating text:") |
|
blip2_prompt = get_blip2_text(input_image) |
|
print("Generated text:", blip2_prompt) |
|
if len(prompt)>0: |
|
prompt = blip2_prompt + ',' + prompt |
|
else: |
|
prompt = blip2_prompt |
|
print("All text:", prompt) |
|
|
|
input_image = HWC3(input_image) |
|
|
|
img = resize_image(input_image, image_resolution) |
|
H, W, C = img.shape |
|
|
|
print("Generating SAM seg:") |
|
|
|
full_segmask, detected_map = get_sam_control( |
|
resize_image(input_image, detect_resolution)) |
|
|
|
detected_map = HWC3(detected_map.astype(np.uint8)) |
|
detected_map = cv2.resize( |
|
detected_map, (W, H), interpolation=cv2.INTER_LINEAR) |
|
|
|
control = torch.from_numpy( |
|
detected_map.copy()).float().cuda() |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
if seed == -1: |
|
seed = random.randint(0, 65535) |
|
seed_everything(seed) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = {"c_concat": [control], "c_crossattn": [ |
|
model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} |
|
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [ |
|
model.get_learned_conditioning([n_prompt] * num_samples)]} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=True) |
|
|
|
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ( |
|
[strength] * 13) |
|
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, |
|
shape, cond, verbose=False, eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if config.save_memory: |
|
model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = model.decode_first_stage(samples) |
|
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') |
|
* 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [full_segmask] + results |
|
|
|
|
|
|
|
if not use_gradio: |
|
image_path = "images/sa_309398.jpg" |
|
input_image = Image.open(image_path) |
|
input_image = np.array(input_image, dtype=np.uint8) |
|
prompt = "" |
|
a_prompt = 'best quality, extremely detailed' |
|
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' |
|
num_samples = 5 |
|
image_resolution = 512 |
|
detect_resolution = 512 |
|
ddim_steps = 100 |
|
guess_mode = False |
|
strength = 1.0 |
|
scale = 9.0 |
|
seed = 10086 |
|
eta = 0.0 |
|
|
|
outputs = process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, |
|
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) |
|
|
|
image_list = [] |
|
input_image = resize_image(input_image, 512) |
|
image_list.append(torch.tensor(input_image)) |
|
for i in range(len(outputs)): |
|
each = outputs[i] |
|
each = resize_image(each, 512) |
|
print(i, each.shape) |
|
image_list.append(torch.tensor(each)) |
|
|
|
image_list = torch.stack(image_list).permute(0, 3, 1, 2) |
|
|
|
save_image(image_list, "sample.jpg", nrow=4, |
|
normalize=True, value_range=(0, 255)) |
|
|
|
else: |
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"## Edit Anything powered by ControlNet+SAM+BLIP2+Stable Diffusion") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="numpy") |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
num_samples = gr.Slider( |
|
label="Images", minimum=1, maximum=12, value=1, step=1) |
|
image_resolution = gr.Slider( |
|
label="Image Resolution", minimum=256, maximum=768, value=512, step=64) |
|
strength = gr.Slider( |
|
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) |
|
guess_mode = gr.Checkbox(label='Guess Mode', value=False) |
|
detect_resolution = gr.Slider( |
|
label="SAM Resolution", minimum=128, maximum=2048, value=1024, step=1) |
|
ddim_steps = gr.Slider( |
|
label="Steps", minimum=1, maximum=100, value=20, step=1) |
|
scale = gr.Slider( |
|
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=-1, |
|
maximum=2147483647, step=1, randomize=True) |
|
eta = gr.Number(label="eta (DDIM)", value=0.0) |
|
a_prompt = gr.Textbox( |
|
label="Added Prompt", value='best quality, extremely detailed') |
|
n_prompt = gr.Textbox(label="Negative Prompt", |
|
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') |
|
with gr.Column(): |
|
result_gallery = gr.Gallery( |
|
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') |
|
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, |
|
detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
|
|
block.launch(server_name='0.0.0.0') |
|
|