Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,143 Bytes
69620c8 1b59cb3 69620c8 9512d1e 1b59cb3 e0e09c3 cac24ee 81ef357 8621dcd bf1f981 69620c8 8621dcd 9d77ac0 8621dcd 69620c8 fa21a1c 69620c8 4ef5bd9 69620c8 c1bd24e 69620c8 181c134 a0be1d1 69620c8 cac24ee 81ef357 cac24ee e0386b6 cac24ee d324776 061ad1a cac24ee 69620c8 a09a841 a6dc53c 69620c8 e0e09c3 1b59cb3 add0661 1b59cb3 87583b0 1b59cb3 e0e09c3 d324776 e35757e e0e09c3 add0661 1b59cb3 d324776 a3e632d 69620c8 220b7ed 69620c8 d1cb9e7 69620c8 bf8553f b60f120 69620c8 c792d6f 31ad247 69620c8 b60f120 69620c8 a0be1d1 7617ffa 69620c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import spaces
import gradio as gr
import torch
from PIL import Image, PngImagePlugin
from diffusers import DiffusionPipeline
import random
import os
import pygsheets
from datetime import datetime
import json
from gradio_client import Client as client_gradio
from supabase import create_client, Client
# Initialize supabase
url: str = os.getenv('SUPABASE_URL')
key: str = os.getenv('SUPABASE_KEY')
supabase: Client = create_client(url, key)
# Initialize the base model and specific LoRA
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "markury/AndroFlux"
trigger_word = "" # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo, weight_name = "AndroFlux-v19.safetensors")
pipe.to("cuda")
MAX_SEED = 2**32-1
@spaces.GPU(duration=80)
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# Set random seed for reproducibility
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
#Moderation
moderation_client = client_gradio("duchaba/Friendly_Text_Moderation")
result = moderation_client.predict(
msg=f"{prompt}",
safer=0.02,
api_name="/fetch_toxicity_level"
)
if float(json.loads(result[1])['sexual_minors']) > 0.03 :
print('Minors')
response_data = (supabase.table("requests")
.insert({"prompt":prompt, "cfg_scale":cfg_scale, "steps":steps, "randomized_seed": randomize_seed, "seed":seed, "lora_scale" : lora_scale, "moderated" : 'true'})
.execute()
)
raise gr.Error("Unauthorized request 💥!")
# Update progress bar (0% saat mulai)
progress(0, "Starting image generation...")
# Generate image using the pipeline
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
max_sequence_length=512
).images[0]
# Save the image to a file with a unique name in /tmp directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_filename = f"generated_image_{timestamp}.png"
image_path = os.path.join("/tmp/gradio", image_filename)
# Add Metadata
new_metadata_string = f"{prompt}\nNegative prompt: none \nSteps: {steps}, CFG scale: {cfg_scale}, Seed: {seed}, Lora hashes: AndroFlux-v19: c44afd41ece1"
metadata = PngImagePlugin.PngInfo()
metadata.add_text("parameters", new_metadata_string)
#Save the tmp image
image.save(image_path, pnginfo=metadata)
#Log queries
try:
if "girl" not in prompt and "woman" not in prompt:
#Save image in supabase
response = supabase.storage.from_('generated_images').upload(image_filename, image_path,file_options={"content-type":"image/png;charset=UTF-8"})
print(response.dict)
#Log request in supabase
response_data = (supabase.table("requests")
.insert({"prompt":prompt, "cfg_scale":cfg_scale, "steps":steps, "randomized_seed": randomize_seed, "seed":seed, "lora_scale" : lora_scale, "image_url" : response.full_path})
.execute()
)
except Exception as error:
# handle the exception
print("An exception occurred:", error)
yield image, seed
# Example cached image and settings
example_image_path = "blond_5.webp" # Replace with the actual path to the example image
example_prompt = """a full frontal view photo of a athletic man with olive skin in his late twenties standing on a flowery terrace at golden hour. He is fully naked with a thick uncut penis and blond pubic hair. The man has long blond hair and has a dominant expression. The setting is outdoors, with a peaceful and aesthetic atmosphere."""
example_cfg_scale = 3.5
example_steps = 25
example_width = 896
example_height = 1152
example_seed = 556215326
example_lora_scale = 1
def load_example():
# Load example image from file
example_image = Image.open(example_image_path)
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
gr_theme = os.getenv("THEME")
with gr.Blocks(theme=gr_theme) as app:
gr.Markdown("# Androflux Image Generator")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt of max 77 characters", lines=3)
generate_button = gr.Button("Generate")
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps)
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height)
randomize_seed = gr.Checkbox(False, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale)
with gr.Column(scale=1):
result = gr.Image(label="Generated Image")
gr.Markdown("Generate images using Androflux Lora and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]")
# Automatically load example data and image when the interface is launched
app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result])
generate_button.click(
run_lora,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed],
)
app.queue()
app.launch() |