Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Set up the page configuration for a wide layout and better experience
|
5 |
+
st.set_page_config(
|
6 |
+
page_title="Live Transformer Demo",
|
7 |
+
layout="wide", # This will allow a wider layout for your app
|
8 |
+
)
|
9 |
+
|
10 |
+
# Add custom CSS for the header background
|
11 |
+
st.markdown("""
|
12 |
+
<style>
|
13 |
+
.header {
|
14 |
+
background-image: url('https://images.unsplash.com/photo-1557682250-48bfe2db9041');
|
15 |
+
background-size: cover;
|
16 |
+
padding: 60px;
|
17 |
+
text-align: center;
|
18 |
+
border-radius: 15px;
|
19 |
+
color: white;
|
20 |
+
font-family: 'Arial', sans-serif;
|
21 |
+
}
|
22 |
+
.header h1 {
|
23 |
+
font-size: 50px;
|
24 |
+
font-weight: bold;
|
25 |
+
}
|
26 |
+
.header p {
|
27 |
+
font-size: 20px;
|
28 |
+
margin-top: 10px;
|
29 |
+
}
|
30 |
+
.header a {
|
31 |
+
color: #ffcc00;
|
32 |
+
font-weight: bold;
|
33 |
+
text-decoration: none;
|
34 |
+
}
|
35 |
+
.header a:hover {
|
36 |
+
text-decoration: underline;
|
37 |
+
}
|
38 |
+
</style>
|
39 |
+
<div class="header">
|
40 |
+
<h1>π€ Live Transformer Demo</h1>
|
41 |
+
<p>Explore Sentiment Analysis and Translation using models from <a href="https://huggingface.co/" target="_blank">Hugging Face</a>.</p>
|
42 |
+
</div>
|
43 |
+
""", unsafe_allow_html=True)
|
44 |
+
|
45 |
+
# Add an explanation of the app with markdown
|
46 |
+
st.markdown("""
|
47 |
+
Welcome to the Transformer NLP Demo! This app showcases **Sentiment Analysis** and **Translation** tasks.
|
48 |
+
|
49 |
+
- π **Sentiment Analysis** for understanding opinions.
|
50 |
+
- π **Translation** across multiple languages, including Albanian, Dutch, French, German, Hindi, Indonesian, Italian, Mandarin (Chinese), Russian, and Spanish.
|
51 |
+
|
52 |
+
Simply choose a task below, enter your text, and click 'Run' to see the results!
|
53 |
+
""")
|
54 |
+
|
55 |
+
# Two-column layout
|
56 |
+
col1, col2 = st.columns([2, 1])
|
57 |
+
|
58 |
+
# Left column for input and task selection
|
59 |
+
with col1:
|
60 |
+
st.subheader("Start Exploring")
|
61 |
+
|
62 |
+
# Task selection
|
63 |
+
task = st.selectbox("Choose a task", ["Sentiment Analysis", "Translation"])
|
64 |
+
|
65 |
+
# Language selection for translation
|
66 |
+
target_language = None
|
67 |
+
if task == "Translation":
|
68 |
+
target_language = st.selectbox("Select language", [
|
69 |
+
"Albanian", "Dutch", "French", "German", "Hindi", "Indonesian",
|
70 |
+
"Italian", "Mandarin (Chinese)", "Russian", "Spanish"
|
71 |
+
])
|
72 |
+
|
73 |
+
# Text input from the user
|
74 |
+
user_input = st.text_area("Enter your text here:", height=150)
|
75 |
+
|
76 |
+
# Load the appropriate model with advanced caching
|
77 |
+
@st.cache_resource(ttl=24*3600, max_entries=10)
|
78 |
+
def load_model(task_name, target_language=None):
|
79 |
+
if task_name == "Sentiment Analysis":
|
80 |
+
return pipeline("sentiment-analysis")
|
81 |
+
elif task_name == "Translation":
|
82 |
+
if target_language == "Albanian":
|
83 |
+
return pipeline("translation_en_to_sq", model="Helsinki-NLP/opus-mt-en-sq")
|
84 |
+
elif target_language == "Dutch":
|
85 |
+
return pipeline("translation_en_to_nl", model="Helsinki-NLP/opus-mt-en-nl")
|
86 |
+
elif target_language == "French":
|
87 |
+
return pipeline("translation_en_to_fr", model="Helsinki-NLP/opus-mt-en-fr")
|
88 |
+
elif target_language == "German":
|
89 |
+
return pipeline("translation_en_to_de", model="Helsinki-NLP/opus-mt-en-de")
|
90 |
+
elif target_language == "Hindi":
|
91 |
+
return pipeline("translation_en_to_hi", model="Helsinki-NLP/opus-mt-en-hi")
|
92 |
+
elif target_language == "Indonesian":
|
93 |
+
return pipeline("translation_en_to_id", model="Helsinki-NLP/opus-mt-en-id")
|
94 |
+
elif target_language == "Italian":
|
95 |
+
return pipeline("translation_en_to_it", model="Helsinki-NLP/opus-mt-en-it")
|
96 |
+
elif target_language == "Mandarin (Chinese)":
|
97 |
+
return pipeline("translation_en_to_zh", model="Helsinki-NLP/opus-mt-en-zh")
|
98 |
+
elif target_language == "Russian":
|
99 |
+
return pipeline("translation_en_to_ru", model="Helsinki-NLP/opus-mt-en-ru")
|
100 |
+
elif target_language == "Spanish":
|
101 |
+
return pipeline("translation_en_to_es", model="Helsinki-NLP/opus-mt-en-es")
|
102 |
+
|
103 |
+
model = load_model(task, target_language)
|
104 |
+
|
105 |
+
# Cache the results of each task to avoid re-computation
|
106 |
+
@st.cache_data(ttl=24*3600, max_entries=50)
|
107 |
+
def analyze_sentiment(input_text):
|
108 |
+
return model(input_text)
|
109 |
+
|
110 |
+
@st.cache_data(ttl=24*3600, max_entries=50)
|
111 |
+
def translate_text(input_text):
|
112 |
+
return model(input_text)[0]["translation_text"]
|
113 |
+
|
114 |
+
# Perform the selected task
|
115 |
+
if st.button("Run"):
|
116 |
+
if user_input:
|
117 |
+
with st.spinner(f"Performing {task.lower()}..."):
|
118 |
+
if task == "Sentiment Analysis":
|
119 |
+
result = analyze_sentiment(user_input)[0]
|
120 |
+
label = result["label"]
|
121 |
+
score = result["score"]
|
122 |
+
st.success("Sentiment Analysis Result:")
|
123 |
+
st.write(f"**Label**: {label}, **Score**: {score:.4f}")
|
124 |
+
elif task == "Translation":
|
125 |
+
translation = translate_text(user_input)
|
126 |
+
st.success(f"Translation (English to {target_language}):")
|
127 |
+
st.write(translation)
|
128 |
+
else:
|
129 |
+
st.error("Please enter some text.")
|