Update app.py
Browse files
app.py
CHANGED
@@ -62,8 +62,158 @@ def generate_sample_data(tickers):
|
|
62 |
|
63 |
return pd.DataFrame(data, index=dates)
|
64 |
|
65 |
-
#
|
66 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
if __name__ == "__main__":
|
69 |
app.launch()
|
|
|
62 |
|
63 |
return pd.DataFrame(data, index=dates)
|
64 |
|
65 |
+
# Predefined S&P 500 Stock List (Sample tickers)
|
66 |
+
SP500_TICKERS = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', 'BRK-B', 'NVDA', 'JPM', 'JNJ', 'V']
|
67 |
+
|
68 |
+
def calculate_portfolio_metrics(weights, returns):
|
69 |
+
portfolio_return = np.sum(returns.mean() * weights) * 252
|
70 |
+
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(returns.cov() * 252, weights)))
|
71 |
+
sharpe_ratio = portfolio_return / portfolio_volatility
|
72 |
+
return portfolio_return, portfolio_volatility, sharpe_ratio
|
73 |
+
|
74 |
+
def optimize_portfolio(returns, max_volatility):
|
75 |
+
num_assets = len(returns.columns)
|
76 |
+
args = (returns,)
|
77 |
+
constraints = (
|
78 |
+
{'type': 'eq', 'fun': lambda x: np.sum(x) - 1}, # Sum of weights must be 1
|
79 |
+
{'type': 'ineq', 'fun': lambda x: max_volatility - np.sqrt(np.dot(x.T, np.dot(returns.cov() * 252, x)))}
|
80 |
+
)
|
81 |
+
bounds = tuple((0, 1) for _ in range(num_assets))
|
82 |
+
|
83 |
+
result = sco.minimize(
|
84 |
+
lambda weights, returns: -calculate_portfolio_metrics(weights, returns)[2],
|
85 |
+
num_assets * [1. / num_assets,],
|
86 |
+
args=args,
|
87 |
+
method='SLSQP',
|
88 |
+
bounds=bounds,
|
89 |
+
constraints=constraints
|
90 |
+
)
|
91 |
+
return result.x
|
92 |
+
|
93 |
+
def simulate_investment(weights, mu, years, initial_investment=10000):
|
94 |
+
projected_return = np.dot(weights, mu) * years
|
95 |
+
return initial_investment * (1 + projected_return)
|
96 |
+
|
97 |
+
def output_results(risk_level):
|
98 |
+
try:
|
99 |
+
# Select random tickers
|
100 |
+
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS), 5))
|
101 |
+
|
102 |
+
# Fetch real stock data
|
103 |
+
stocks_df = fetch_stock_data(selected_tickers)
|
104 |
+
|
105 |
+
if stocks_df.empty:
|
106 |
+
raise ValueError("No stock data received")
|
107 |
+
|
108 |
+
returns = stocks_df.pct_change().dropna()
|
109 |
+
|
110 |
+
# Set risk thresholds
|
111 |
+
risk_thresholds = {"Low": 0.15, "Medium": 0.25, "High": 0.35}
|
112 |
+
max_volatility = risk_thresholds.get(risk_level, 0.25)
|
113 |
+
|
114 |
+
# Calculate optimal portfolio
|
115 |
+
optimized_weights = optimize_portfolio(returns, max_volatility)
|
116 |
+
mu = returns.mean() * 252
|
117 |
+
portfolio_return, portfolio_volatility, sharpe_ratio = calculate_portfolio_metrics(optimized_weights, returns)
|
118 |
+
|
119 |
+
# Format metrics
|
120 |
+
expected_annual_return = f'{(portfolio_return * 100):.2f}%'
|
121 |
+
annual_volatility = f'{(portfolio_volatility * 100):.2f}%'
|
122 |
+
sharpe_ratio_str = f'{sharpe_ratio:.2f}'
|
123 |
+
|
124 |
+
# Create visualizations
|
125 |
+
weights_df = pd.DataFrame({
|
126 |
+
'Ticker': selected_tickers,
|
127 |
+
'Weight': [f'{w:.2%}' for w in optimized_weights]
|
128 |
+
})
|
129 |
+
|
130 |
+
# Correlation matrix
|
131 |
+
correlation_matrix = returns.corr()
|
132 |
+
fig_corr = px.imshow(
|
133 |
+
correlation_matrix,
|
134 |
+
text_auto=True,
|
135 |
+
title='Stock Correlation Matrix',
|
136 |
+
color_continuous_scale='RdBu'
|
137 |
+
)
|
138 |
+
|
139 |
+
# Cumulative returns
|
140 |
+
cumulative_returns = (1 + returns).cumprod()
|
141 |
+
fig_cum_returns = px.line(
|
142 |
+
cumulative_returns,
|
143 |
+
title='Cumulative Returns of Individual Stocks'
|
144 |
+
)
|
145 |
+
|
146 |
+
# Investment projection
|
147 |
+
projected_1yr = simulate_investment(optimized_weights, mu, 1)
|
148 |
+
projected_5yr = simulate_investment(optimized_weights, mu, 5)
|
149 |
+
projected_10yr = simulate_investment(optimized_weights, mu, 10)
|
150 |
+
|
151 |
+
projection_df = pd.DataFrame({
|
152 |
+
"Years": [1, 5, 10],
|
153 |
+
"Projected Value": [projected_1yr, projected_5yr, projected_10yr]
|
154 |
+
})
|
155 |
+
|
156 |
+
fig_simulation = px.line(
|
157 |
+
projection_df,
|
158 |
+
x='Years',
|
159 |
+
y='Projected Value',
|
160 |
+
title='Projected $10,000 Investment Growth'
|
161 |
+
)
|
162 |
+
|
163 |
+
return (
|
164 |
+
fig_cum_returns,
|
165 |
+
weights_df,
|
166 |
+
fig_corr,
|
167 |
+
expected_annual_return,
|
168 |
+
annual_volatility,
|
169 |
+
sharpe_ratio_str,
|
170 |
+
fig_simulation
|
171 |
+
)
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
print(f"Error in output_results: {str(e)}")
|
175 |
+
return None, None, None, f"Error: {str(e)}", "Error", "Error", None
|
176 |
+
|
177 |
+
# Create Gradio interface
|
178 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
179 |
+
gr.Markdown("## Investment Portfolio Generator")
|
180 |
+
gr.Markdown("Select your risk level to generate a balanced portfolio based on S&P 500 stocks.")
|
181 |
+
|
182 |
+
with gr.Row():
|
183 |
+
risk_level = gr.Radio(
|
184 |
+
["Low", "Medium", "High"],
|
185 |
+
label="Select Your Risk Level",
|
186 |
+
value="Medium"
|
187 |
+
)
|
188 |
+
|
189 |
+
btn = gr.Button("Generate Portfolio")
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
expected_annual_return = gr.Textbox(label="Expected Annual Return")
|
193 |
+
annual_volatility = gr.Textbox(label="Annual Volatility")
|
194 |
+
sharpe_ratio = gr.Textbox(label="Sharpe Ratio")
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
fig_cum_returns = gr.Plot(label="Cumulative Returns")
|
198 |
+
weights_df = gr.DataFrame(label="Portfolio Weights")
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
fig_corr = gr.Plot(label="Correlation Matrix")
|
202 |
+
fig_simulation = gr.Plot(label="Investment Projection")
|
203 |
+
|
204 |
+
btn.click(
|
205 |
+
output_results,
|
206 |
+
inputs=[risk_level],
|
207 |
+
outputs=[
|
208 |
+
fig_cum_returns,
|
209 |
+
weights_df,
|
210 |
+
fig_corr,
|
211 |
+
expected_annual_return,
|
212 |
+
annual_volatility,
|
213 |
+
sharpe_ratio,
|
214 |
+
fig_simulation
|
215 |
+
]
|
216 |
+
)
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
app.launch()
|