Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
peft_model_id = "kimmeoungjun/qlora-koalpaca2" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) | |
model = PeftModel.from_pretrained(model, peft_model_id).to(device) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
def generate(q): | |
inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False) | |
outputs = model.generate( | |
**{k: v.to(device) for k, v in inputs.items()}, | |
max_new_tokens=256, | |
do_sample=True, | |
eos_token_id=2, | |
) | |
result = tokenizer.decode(outputs[0]) | |
answer_idx = result.find("### 답변:") | |
answer = result[answer_idx + 7:].strip() | |
return answer | |
gr.Interface(generate, "text", "text").launch(share=True) | |