Spaces:
Runtime error
Runtime error
Commit
·
f357513
1
Parent(s):
06ee17b
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,50 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
gr.Interface(
|
11 |
-
predict,
|
12 |
-
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
|
13 |
-
outputs=gr.outputs.Label(num_top_classes=2),
|
14 |
-
title="Hot Dog? Or Not?",
|
15 |
-
).launch()
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
|
7 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
8 |
+
peft_model_id = "kimmeoungjun/qlora-koalpaca"
|
9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
|
11 |
+
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
+
|
14 |
+
def my_split(s, seps):
|
15 |
+
res = [s]
|
16 |
+
for sep in seps:
|
17 |
+
s, res = res, []
|
18 |
+
for seq in s:
|
19 |
+
res += seq.split(sep)
|
20 |
+
return res
|
21 |
+
|
22 |
+
def chat_base(input):
|
23 |
+
p = input
|
24 |
+
input_ids = tokenizer(p, return_tensors="pt").input_ids.to(device)
|
25 |
+
gen_tokens = model.generate(input_ids, do_sample=True, early_stopping=True, do_sample=True, eos_token_id=2,)
|
26 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
27 |
+
# print(gen_text)
|
28 |
+
result = gen_text[len(p):]
|
29 |
+
# print(">", result)
|
30 |
+
result = my_split(result, [']', '\n'])[1]
|
31 |
+
# print(">>", result)
|
32 |
+
# print(">>>", result)
|
33 |
+
return result
|
34 |
+
|
35 |
+
def chat(message):
|
36 |
+
history = gr.get_state() or []
|
37 |
+
print(history)
|
38 |
+
response = chat_base(message)
|
39 |
+
history.append((message, response))
|
40 |
+
gr.set_state(history)
|
41 |
+
html = "<div class='chatbot'>"
|
42 |
+
for user_msg, resp_msg in history:
|
43 |
+
html += f"<div class='user_msg'>{user_msg}</div>"
|
44 |
+
html += f"<div class='resp_msg'>{resp_msg}</div>"
|
45 |
+
html += "</div>"
|
46 |
+
return response
|
47 |
+
|
48 |
+
iface = gr.Interface(chat_base, gr.inputs.Textbox(label="물어보세요"), "text", allow_screenshot=False, allow_flagging=False)
|
49 |
+
iface.launch()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|