Upload 8 files
Browse files- ADE_val_00000001.jpeg +0 -0
- ADE_val_00001159.jpg +0 -0
- ADE_val_00001248.jpg +0 -0
- ADE_val_00001472.jpg +0 -0
- README.md +5 -5
- app.py +136 -138
ADE_val_00000001.jpeg
ADDED
|
ADE_val_00001159.jpg
ADDED
|
ADE_val_00001248.jpg
ADDED
|
ADE_val_00001472.jpg
ADDED
|
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Segmentation
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.44.4
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -8,167 +8,165 @@ import tensorflow as tf
|
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
| 10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
-
|
| 12 |
-
"nvidia/segformer-b0-finetuned-ade-512-512"
|
| 13 |
)
|
| 14 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
| 15 |
-
|
| 16 |
-
"nvidia/segformer-b0-finetuned-ade-512-512"
|
| 17 |
)
|
| 18 |
|
| 19 |
def ade_palette():
|
| 20 |
"""ADE20K palette that maps each class to RGB values."""
|
| 21 |
return [
|
| 22 |
-
[
|
| 23 |
-
[
|
| 24 |
-
[
|
| 25 |
-
[
|
| 26 |
-
[
|
| 27 |
-
[
|
| 28 |
-
[
|
| 29 |
-
[
|
| 30 |
-
[
|
| 31 |
-
[
|
| 32 |
-
[
|
| 33 |
-
[
|
| 34 |
-
[
|
| 35 |
-
[
|
| 36 |
-
[
|
| 37 |
-
[
|
| 38 |
-
[
|
| 39 |
-
[
|
| 40 |
-
[
|
| 41 |
-
[
|
| 42 |
-
[
|
| 43 |
-
[
|
| 44 |
-
[
|
| 45 |
-
[
|
| 46 |
-
[
|
| 47 |
-
[78,
|
| 48 |
-
[
|
| 49 |
-
[
|
| 50 |
-
[
|
| 51 |
-
[
|
| 52 |
-
[
|
| 53 |
-
[
|
| 54 |
-
[
|
| 55 |
-
[
|
| 56 |
-
[
|
| 57 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
[28, 210, 99],
|
| 59 |
-
[78,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
[78, 145, 57],
|
| 61 |
-
[57, 200, 136],
|
| 62 |
-
[57, 78, 145],
|
| 63 |
-
[210, 99, 28],
|
| 64 |
-
[145, 78, 189],
|
| 65 |
[200, 78, 112],
|
| 66 |
-
[78, 89, 145],
|
| 67 |
-
[99, 28, 210],
|
| 68 |
-
[189, 78, 47],
|
| 69 |
[99, 89, 145],
|
| 70 |
-
[78, 145, 57],
|
| 71 |
[200, 156, 78],
|
| 72 |
[57, 78, 145],
|
| 73 |
-
[210, 99, 28],
|
| 74 |
-
[145, 78, 189],
|
| 75 |
-
[78, 89, 145],
|
| 76 |
-
[200, 78, 112],
|
| 77 |
-
[57, 78, 145],
|
| 78 |
-
[145, 112, 78],
|
| 79 |
-
[99, 28, 210],
|
| 80 |
-
[57, 200, 136],
|
| 81 |
[78, 57, 99],
|
| 82 |
-
[28, 210, 99],
|
| 83 |
-
[189, 78, 47],
|
| 84 |
-
[145, 78, 189],
|
| 85 |
-
[78, 57, 99],
|
| 86 |
-
[99, 28, 210],
|
| 87 |
-
[57, 200, 136],
|
| 88 |
-
[145, 112, 78],
|
| 89 |
-
[78, 89, 145],
|
| 90 |
-
[200, 78, 112],
|
| 91 |
-
[78, 57, 99],
|
| 92 |
-
[99, 28, 210],
|
| 93 |
-
[145, 78, 99],
|
| 94 |
-
[28, 210, 99],
|
| 95 |
-
[145, 112, 78],
|
| 96 |
-
[78, 89, 145],
|
| 97 |
-
[57, 200, 136],
|
| 98 |
[57, 78, 145],
|
| 99 |
-
[
|
| 100 |
-
[200, 156, 78],
|
| 101 |
-
[99, 28, 210],
|
| 102 |
[78, 89, 145],
|
| 103 |
-
[145, 78, 189],
|
| 104 |
-
[57, 78, 145],
|
| 105 |
-
[200, 78, 112],
|
| 106 |
-
[78, 57, 99],
|
| 107 |
-
[99, 89, 145],
|
| 108 |
[210, 99, 28],
|
| 109 |
[145, 78, 189],
|
| 110 |
-
[28, 210, 99],
|
| 111 |
-
[145, 112, 78],
|
| 112 |
-
[57, 200, 136],
|
| 113 |
-
[78, 57, 99],
|
| 114 |
-
[78, 145, 57],
|
| 115 |
-
[99, 28, 210],
|
| 116 |
-
[200, 156, 78],
|
| 117 |
-
[57, 78, 145],
|
| 118 |
-
[145, 78, 99],
|
| 119 |
-
[78, 89, 145],
|
| 120 |
[57, 200, 136],
|
| 121 |
-
[
|
| 122 |
-
[99, 89, 145],
|
| 123 |
-
[78, 145, 57],
|
| 124 |
[145, 78, 99],
|
| 125 |
-
[200, 78, 112],
|
| 126 |
-
[78, 57, 99],
|
| 127 |
-
[210, 99, 28],
|
| 128 |
-
[57, 78, 145],
|
| 129 |
-
[200, 156, 78],
|
| 130 |
[99, 28, 210],
|
| 131 |
[189, 78, 47],
|
| 132 |
-
[78, 89, 145],
|
| 133 |
-
[57, 200, 136],
|
| 134 |
-
[145, 112, 78],
|
| 135 |
-
[145, 78, 189],
|
| 136 |
[28, 210, 99],
|
| 137 |
-
[99, 89, 145],
|
| 138 |
-
[78, 57, 99],
|
| 139 |
-
[57, 200, 136],
|
| 140 |
-
[210, 99, 28],
|
| 141 |
-
[145, 112, 78],
|
| 142 |
[78, 145, 57],
|
| 143 |
-
[78, 89, 145],
|
| 144 |
-
[57, 78, 145],
|
| 145 |
-
[200, 78, 112],
|
| 146 |
-
[189, 78, 47],
|
| 147 |
-
[200, 156, 78],
|
| 148 |
-
[57, 200, 136],
|
| 149 |
-
[99, 89, 145],
|
| 150 |
-
[99, 28, 210],
|
| 151 |
-
[145, 112, 78],
|
| 152 |
-
[145, 78, 99],
|
| 153 |
-
[57, 78, 145],
|
| 154 |
-
[28, 210, 99],
|
| 155 |
-
[78, 57, 99],
|
| 156 |
-
[78, 145, 57],
|
| 157 |
-
[57, 200, 136],
|
| 158 |
-
[78, 89, 145],
|
| 159 |
-
[99, 28, 210],
|
| 160 |
-
[200, 156, 78],
|
| 161 |
-
[145, 78, 189],
|
| 162 |
-
[78, 57, 99],
|
| 163 |
-
[57, 78, 145],
|
| 164 |
-
[210, 99, 28],
|
| 165 |
-
[99, 89, 145],
|
| 166 |
-
[28, 210, 99],
|
| 167 |
-
[145, 112, 78],
|
| 168 |
-
[200, 78, 112],
|
| 169 |
-
[78, 57, 99],
|
| 170 |
-
[57, 78, 145],
|
| 171 |
-
[99, 28, 210],
|
| 172 |
]
|
| 173 |
|
| 174 |
labels_list = []
|
|
@@ -237,7 +235,7 @@ def sepia(input_img):
|
|
| 237 |
demo = gr.Interface(fn=sepia,
|
| 238 |
inputs=gr.Image(shape=(400, 600)),
|
| 239 |
outputs=['plot'],
|
| 240 |
-
examples=["
|
| 241 |
allow_flagging='never')
|
| 242 |
|
| 243 |
|
|
|
|
| 8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
|
| 10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
+
"nvidia/segformer-b5-finetuned-ade-640-640"
|
|
|
|
| 12 |
)
|
| 13 |
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
| 14 |
+
"nvidia/segformer-b5-finetuned-ade-640-640"
|
|
|
|
| 15 |
)
|
| 16 |
|
| 17 |
def ade_palette():
|
| 18 |
"""ADE20K palette that maps each class to RGB values."""
|
| 19 |
return [
|
| 20 |
+
[204, 87, 92],
|
| 21 |
+
[112, 185, 212],
|
| 22 |
+
[45, 189, 106],
|
| 23 |
+
[234, 123, 67],
|
| 24 |
+
[78, 56, 123],
|
| 25 |
+
[210, 32, 89],
|
| 26 |
+
[90, 180, 56],
|
| 27 |
+
[155, 102, 200],
|
| 28 |
+
[33, 147, 176],
|
| 29 |
+
[255, 183, 76],
|
| 30 |
+
[67, 123, 89],
|
| 31 |
+
[190, 60, 45],
|
| 32 |
+
[134, 112, 200],
|
| 33 |
+
[56, 45, 189],
|
| 34 |
+
[200, 56, 123],
|
| 35 |
+
[87, 92, 204],
|
| 36 |
+
[120, 56, 123],
|
| 37 |
+
[45, 78, 123],
|
| 38 |
+
[156, 200, 56],
|
| 39 |
+
[32, 90, 210],
|
| 40 |
+
[56, 123, 67],
|
| 41 |
+
[180, 56, 123],
|
| 42 |
+
[123, 67, 45],
|
| 43 |
+
[45, 134, 200],
|
| 44 |
+
[67, 56, 123],
|
| 45 |
+
[78, 123, 67],
|
| 46 |
+
[32, 210, 90],
|
| 47 |
+
[45, 56, 189],
|
| 48 |
+
[123, 56, 123],
|
| 49 |
+
[56, 156, 200],
|
| 50 |
+
[189, 56, 45],
|
| 51 |
+
[112, 200, 56],
|
| 52 |
+
[56, 123, 45],
|
| 53 |
+
[200, 32, 90],
|
| 54 |
+
[123, 45, 78],
|
| 55 |
+
[200, 156, 56],
|
| 56 |
+
[45, 67, 123],
|
| 57 |
+
[56, 45, 78],
|
| 58 |
+
[45, 56, 123],
|
| 59 |
+
[123, 67, 56],
|
| 60 |
+
[56, 78, 123],
|
| 61 |
+
[210, 90, 32],
|
| 62 |
+
[123, 56, 189],
|
| 63 |
+
[45, 200, 134],
|
| 64 |
+
[67, 123, 56],
|
| 65 |
+
[123, 45, 67],
|
| 66 |
+
[90, 32, 210],
|
| 67 |
+
[200, 45, 78],
|
| 68 |
+
[32, 210, 90],
|
| 69 |
+
[45, 123, 67],
|
| 70 |
+
[165, 42, 87],
|
| 71 |
+
[72, 145, 167],
|
| 72 |
+
[15, 158, 75],
|
| 73 |
+
[209, 89, 40],
|
| 74 |
+
[32, 21, 121],
|
| 75 |
+
[184, 20, 100],
|
| 76 |
+
[56, 135, 15],
|
| 77 |
+
[128, 92, 176],
|
| 78 |
+
[1, 119, 140],
|
| 79 |
+
[220, 151, 43],
|
| 80 |
+
[41, 97, 72],
|
| 81 |
+
[148, 38, 27],
|
| 82 |
+
[107, 86, 176],
|
| 83 |
+
[21, 26, 136],
|
| 84 |
+
[174, 27, 90],
|
| 85 |
+
[91, 96, 204],
|
| 86 |
+
[108, 50, 107],
|
| 87 |
+
[27, 45, 136],
|
| 88 |
+
[168, 200, 52],
|
| 89 |
+
[7, 102, 27],
|
| 90 |
+
[42, 93, 56],
|
| 91 |
+
[140, 52, 112],
|
| 92 |
+
[92, 107, 168],
|
| 93 |
+
[17, 118, 176],
|
| 94 |
+
[59, 50, 174],
|
| 95 |
+
[206, 40, 143],
|
| 96 |
+
[44, 19, 142],
|
| 97 |
+
[23, 168, 75],
|
| 98 |
+
[54, 57, 189],
|
| 99 |
+
[144, 21, 15],
|
| 100 |
+
[15, 176, 35],
|
| 101 |
+
[107, 19, 79],
|
| 102 |
+
[204, 52, 114],
|
| 103 |
+
[48, 173, 83],
|
| 104 |
+
[11, 120, 53],
|
| 105 |
+
[206, 104, 28],
|
| 106 |
+
[20, 31, 153],
|
| 107 |
+
[27, 21, 93],
|
| 108 |
+
[11, 206, 138],
|
| 109 |
+
[112, 30, 83],
|
| 110 |
+
[68, 91, 152],
|
| 111 |
+
[153, 13, 43],
|
| 112 |
+
[25, 114, 54],
|
| 113 |
+
[92, 27, 150],
|
| 114 |
+
[108, 42, 59],
|
| 115 |
+
[194, 77, 5],
|
| 116 |
+
[145, 48, 83],
|
| 117 |
+
[7, 113, 19],
|
| 118 |
+
[25, 92, 113],
|
| 119 |
+
[60, 168, 79],
|
| 120 |
+
[78, 33, 120],
|
| 121 |
+
[89, 176, 205],
|
| 122 |
+
[27, 200, 94],
|
| 123 |
+
[210, 67, 23],
|
| 124 |
+
[123, 89, 189],
|
| 125 |
+
[225, 56, 112],
|
| 126 |
+
[75, 156, 45],
|
| 127 |
+
[172, 104, 200],
|
| 128 |
+
[15, 170, 197],
|
| 129 |
+
[240, 133, 65],
|
| 130 |
+
[89, 156, 112],
|
| 131 |
+
[214, 88, 57],
|
| 132 |
+
[156, 134, 200],
|
| 133 |
+
[78, 57, 189],
|
| 134 |
+
[200, 78, 123],
|
| 135 |
+
[106, 120, 210],
|
| 136 |
+
[145, 56, 112],
|
| 137 |
+
[89, 120, 189],
|
| 138 |
+
[185, 206, 56],
|
| 139 |
+
[47, 99, 28],
|
| 140 |
+
[112, 189, 78],
|
| 141 |
+
[200, 112, 89],
|
| 142 |
+
[89, 145, 112],
|
| 143 |
+
[78, 106, 189],
|
| 144 |
+
[112, 78, 189],
|
| 145 |
+
[156, 112, 78],
|
| 146 |
[28, 210, 99],
|
| 147 |
+
[78, 89, 189],
|
| 148 |
+
[189, 78, 57],
|
| 149 |
+
[112, 200, 78],
|
| 150 |
+
[189, 47, 78],
|
| 151 |
+
[205, 112, 57],
|
| 152 |
[78, 145, 57],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
[200, 78, 112],
|
|
|
|
|
|
|
|
|
|
| 154 |
[99, 89, 145],
|
|
|
|
| 155 |
[200, 156, 78],
|
| 156 |
[57, 78, 145],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
[78, 57, 99],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
[57, 78, 145],
|
| 159 |
+
[145, 112, 78],
|
|
|
|
|
|
|
| 160 |
[78, 89, 145],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
[210, 99, 28],
|
| 162 |
[145, 78, 189],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
[57, 200, 136],
|
| 164 |
+
[89, 156, 78],
|
|
|
|
|
|
|
| 165 |
[145, 78, 99],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
[99, 28, 210],
|
| 167 |
[189, 78, 47],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
[28, 210, 99],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
[78, 145, 57],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
]
|
| 171 |
|
| 172 |
labels_list = []
|
|
|
|
| 235 |
demo = gr.Interface(fn=sepia,
|
| 236 |
inputs=gr.Image(shape=(400, 600)),
|
| 237 |
outputs=['plot'],
|
| 238 |
+
examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
|
| 239 |
allow_flagging='never')
|
| 240 |
|
| 241 |
|