AICoverGen / src /mdx.py
Zeph27's picture
add print debug
bce4e8a
raw
history blame
12.5 kB
import gc
import hashlib
import os
import queue
import threading
import warnings
import librosa
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from tqdm import tqdm
warnings.filterwarnings("ignore")
stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'}
class MDXModel:
def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000):
print("[~] Initializing MDXModel...")
self.dim_f = dim_f
self.dim_t = dim_t
self.dim_c = 4
self.n_fft = n_fft
self.hop = hop
self.stem_name = stem_name
self.compensation = compensation
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
out_c = self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
print("[+] MDXModel initialized")
def stft(self, x):
print("[~] Performing STFT...")
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t])
print("[+] STFT completed")
return x[:, :, :self.dim_f]
def istft(self, x, freq_pad=None):
print("[~] Performing inverse STFT...")
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
print("[+] Inverse STFT completed")
return x.reshape([-1, 2, self.chunk_size])
class MDX:
DEFAULT_SR = 44100
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
DEFAULT_PROCESSOR = 0
def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR):
print("[~] Initializing MDX...")
self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu')
self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider']
self.model = params
print(f"[~] Loading ONNX model from {model_path}...")
self.ort = ort.InferenceSession(model_path, providers=self.provider)
print("[~] Preloading model...")
self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()})
self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0]
self.prog = None
print("[+] MDX initialized")
@staticmethod
def get_hash(model_path):
print(f"[~] Calculating hash for model: {model_path}")
try:
with open(model_path, 'rb') as f:
f.seek(- 10000 * 1024, 2)
model_hash = hashlib.md5(f.read()).hexdigest()
except:
model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest()
print(f"[+] Model hash: {model_hash}")
return model_hash
@staticmethod
def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE):
print("[~] Segmenting wave...")
if combine:
processed_wave = None
for segment_count, segment in enumerate(wave):
start = 0 if segment_count == 0 else margin_size
end = None if segment_count == len(wave) - 1 else -margin_size
if margin_size == 0:
end = None
if processed_wave is None:
processed_wave = segment[:, start:end]
else:
processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1)
else:
processed_wave = []
sample_count = wave.shape[-1]
if chunk_size <= 0 or chunk_size > sample_count:
chunk_size = sample_count
if margin_size > chunk_size:
margin_size = chunk_size
for segment_count, skip in enumerate(range(0, sample_count, chunk_size)):
margin = 0 if segment_count == 0 else margin_size
end = min(skip + chunk_size + margin_size, sample_count)
start = skip - margin
cut = wave[:, start:end].copy()
processed_wave.append(cut)
if end == sample_count:
break
print("[+] Wave segmentation completed")
return processed_wave
def pad_wave(self, wave):
print("[~] Padding wave...")
n_sample = wave.shape[1]
trim = self.model.n_fft // 2
gen_size = self.model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1)
mix_waves = []
for i in range(0, n_sample + pad, gen_size):
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
mix_waves.append(waves)
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
print(f"[+] Wave padded. Shape: {mix_waves.shape}")
return mix_waves, pad, trim
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
print(f"[~] Processing wave segment {_id}...")
mix_waves = mix_waves.split(1)
with torch.no_grad():
pw = []
for mix_wave in mix_waves:
self.prog.update()
spec = self.model.stft(mix_wave)
processed_spec = torch.tensor(self.process(spec))
processed_wav = self.model.istft(processed_spec.to(self.device))
processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy()
pw.append(processed_wav)
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
q.put({_id: processed_signal})
print(f"[+] Wave segment {_id} processed")
return processed_signal
def process_wave(self, wave: np.array, mt_threads=1):
print(f"[~] Processing wave with {mt_threads} threads...")
self.prog = tqdm(total=0)
chunk = wave.shape[-1] // mt_threads
waves = self.segment(wave, False, chunk)
q = queue.Queue()
threads = []
for c, batch in enumerate(waves):
mix_waves, pad, trim = self.pad_wave(batch)
self.prog.total = len(mix_waves) * mt_threads
thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
self.prog.close()
processed_batches = []
while not q.empty():
processed_batches.append(q.get())
processed_batches = [list(wave.values())[0] for wave in
sorted(processed_batches, key=lambda d: list(d.keys())[0])]
assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!'
print("[+] Wave processing completed")
return self.segment(processed_batches, True, chunk)
def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2):
print(f"[~] Running MDX on file: {filename}")
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
device_properties = torch.cuda.get_device_properties(device)
vram_gb = device_properties.total_memory / 1024**3
m_threads = 1 if vram_gb < 8 else 2
print(f"[~] Using {m_threads} threads for processing")
model_hash = MDX.get_hash(model_path)
mp = model_params.get(model_hash)
model = MDXModel(
device,
dim_f=mp["mdx_dim_f_set"],
dim_t=2 ** mp["mdx_dim_t_set"],
n_fft=mp["mdx_n_fft_scale_set"],
stem_name=mp["primary_stem"],
compensation=mp["compensate"]
)
mdx_sess = MDX(model_path, model)
print("[~] Loading audio file...")
wave, sr = librosa.load(filename, mono=False, sr=44100)
print("[~] Normalizing input wave...")
peak = max(np.max(wave), abs(np.min(wave)))
wave /= peak
if denoise:
print("[~] Denoising wave...")
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
wave_processed *= 0.5
else:
print("[~] Processing wave...")
wave_processed = mdx_sess.process_wave(wave, m_threads)
wave_processed *= peak
stem_name = model.stem_name if suffix is None else suffix
main_filepath = None
if not exclude_main:
main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
print(f"[~] Writing main output to: {main_filepath}")
sf.write(main_filepath, wave_processed.T, sr)
invert_filepath = None
if not exclude_inversion:
diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav")
print(f"[~] Writing inverted output to: {invert_filepath}")
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
if not keep_orig:
print(f"[~] Removing original file: {filename}")
os.remove(filename)
print("[~] Cleaning up...")
del mdx_sess, wave_processed, wave
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print("[+] MDX processing completed")
return main_filepath, invert_filepath
def run_roformer(model_params, output_dir, model_name, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2):
print(f"[~] Running RoFormer on file: {filename}")
os.makedirs(output_dir, exist_ok=True)
print("[~] Loading audio file...")
wave, sr = librosa.load(filename, mono=False, sr=44100)
base_name = os.path.splitext(os.path.basename(filename))[0]
roformer_output_format = 'wav'
roformer_overlap = 4
roformer_segment_size = 256
print(f"[~] Output directory: {output_dir}")
prompt = f'audio-separator "{filename}" --model_filename {model_name} --output_dir="{output_dir}" --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap} --mdxc_segment_size={roformer_segment_size}'
print(f"[~] Running command: {prompt}")
os.system(prompt)
vocals_file = f"{base_name}_Vocals.wav"
instrumental_file = f"{base_name}_Instrumental.wav"
main_filepath = None
invert_filepath = None
if not exclude_main:
main_filepath = os.path.join(output_dir, vocals_file)
if os.path.exists(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav")):
print(f"[~] Renaming vocals file to: {main_filepath}")
os.rename(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav"), main_filepath)
if not exclude_inversion:
invert_filepath = os.path.join(output_dir, instrumental_file)
if os.path.exists(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav")):
print(f"[~] Renaming instrumental file to: {invert_filepath}")
os.rename(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav"), invert_filepath)
if not keep_orig:
print(f"[~] Removing original file: {filename}")
os.remove(filename)
print("[+] RoFormer processing completed")
return main_filepath, invert_filepath