king007 commited on
Commit
3ab58ed
·
1 Parent(s): 1690756

Update app2.py

Browse files
Files changed (1) hide show
  1. app2.py +72 -0
app2.py CHANGED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from transformers import (
4
+ AutoModelForSeq2SeqLM,
5
+ AutoModelForTableQuestionAnswering,
6
+ AutoTokenizer,
7
+ pipeline,
8
+ )
9
+
10
+ model_tapex = "microsoft/tapex-large-finetuned-wtq"
11
+ tokenizer_tapex = AutoTokenizer.from_pretrained(model_tapex)
12
+ model_tapex = AutoModelForSeq2SeqLM.from_pretrained(model_tapex)
13
+ pipe_tapex = pipeline(
14
+ "table-question-answering", model=model_tapex, tokenizer=tokenizer_tapex
15
+ )
16
+
17
+ model_tapas = "google/tapas-large-finetuned-wtq"
18
+ tokenizer_tapas = AutoTokenizer.from_pretrained(model_tapas)
19
+ model_tapas = AutoModelForTableQuestionAnswering.from_pretrained(model_tapas)
20
+ pipe_tapas = pipeline(
21
+ "table-question-answering", model=model_tapas, tokenizer=tokenizer_tapas
22
+ )
23
+
24
+
25
+ def process(query, file, correct_answer, rows=20):
26
+ table = pd.read_csv(file.name, header=0).astype(str)
27
+ table = table[:rows]
28
+ result_tapex = pipe_tapex(table=table, query=query)
29
+ result_tapas = pipe_tapas(table=table, query=query)
30
+ return result_tapex["answer"], result_tapas["answer"], correct_answer
31
+
32
+
33
+ # Inputs
34
+ query_text = gr.Text(label="Enter a question")
35
+ input_file = gr.File(label="Upload a CSV file", type="file")
36
+ rows_slider = gr.Slider(label="Number of rows")
37
+
38
+ # Output
39
+ answer_text_tapex = gr.Text(label="TAPEX answer")
40
+ answer_text_tapas = gr.Text(label="TAPAS answer")
41
+
42
+ description = "This Space lets you ask questions on CSV documents with Microsoft [TAPEX-Large](https://huggingface.co/microsoft/tapex-large-finetuned-wtq) and Google [TAPAS-Large](https://huggingface.co/google/tapas-large-finetuned-wtq). \
43
+ Both have been fine-tuned on the [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) dataset. \n\n\
44
+ A sample file with football statistics is available in the repository: \n\n\
45
+ * Which team has the most wins? Answer: Manchester City FC\n\
46
+ * Which team has the most wins: Chelsea, Liverpool or Everton? Answer: Liverpool\n\
47
+ * Which teams have scored less than 40 goals? Answer: Cardiff City FC, Fulham FC, Brighton & Hove Albion FC, Huddersfield Town FC\n\
48
+ * What is the average number of wins? Answer: 16 (rounded)\n\n\
49
+ You can also upload your own CSV file. Please note that maximum sequence length for both models is 1024 tokens, \
50
+ so you may need to limit the number of rows in your CSV file. Chunking is not implemented yet."
51
+
52
+ iface = gr.Interface(
53
+ theme="huggingface",
54
+ description=description,
55
+ layout="vertical",
56
+ fn=process,
57
+ inputs=[query_text, input_file, rows_slider],
58
+ outputs=[answer_text_tapex, answer_text_tapas],
59
+ examples=[
60
+ ["Which team has the most wins?", "default_file.csv", 20],
61
+ [
62
+ "Which team has the most wins: Chelsea, Liverpool or Everton?",
63
+ "default_file.csv",
64
+ 20,
65
+ ],
66
+ ["Which teams have scored less than 40 goals?", "default_file.csv", 20],
67
+ ["What is the average number of wins?", "default_file.csv", 20],
68
+ ],
69
+ allow_flagging="never",
70
+ )
71
+
72
+ iface.launch()