Spaces:
Sleeping
Sleeping
Abid
commited on
Commit
•
31a2efa
1
Parent(s):
a61ebcb
added app
Browse files- Gradio/app.py +83 -0
- Images/cover.jpg +0 -0
- Images/winner.png +0 -0
- README.md +117 -14
- Sample/sample1.mp3 +0 -0
- Sample/sample2.mp3 +0 -0
- Sample/sample3.mp3 +0 -0
Gradio/app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datasets import load_dataset, Audio
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
############### HF ###########################
|
7 |
+
|
8 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
+
|
10 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Urdu-ASR-flags")
|
11 |
+
|
12 |
+
############## DVC ################################
|
13 |
+
|
14 |
+
PROD_MODEL_PATH = "Model"
|
15 |
+
|
16 |
+
if os.path.isdir(".dvc"):
|
17 |
+
print("Running DVC")
|
18 |
+
os.system("dvc config cache.type copy")
|
19 |
+
os.system("dvc config core.no_scm true")
|
20 |
+
if os.system(f"dvc pull {PROD_MODEL_PATH}") != 0:
|
21 |
+
exit("dvc pull failed")
|
22 |
+
os.system("rm -r .dvc")
|
23 |
+
# .apt/usr/lib/dvc
|
24 |
+
|
25 |
+
############## Inference ##############################
|
26 |
+
|
27 |
+
|
28 |
+
def asr(audio):
|
29 |
+
|
30 |
+
asr = pipeline("automatic-speech-recognition", model=model)
|
31 |
+
prediction = asr(audio, chunk_length_s=5, stride_length_s=1)
|
32 |
+
return prediction
|
33 |
+
|
34 |
+
|
35 |
+
################### Gradio Web APP ################################
|
36 |
+
|
37 |
+
title = "Urdu Automatic Speech Recognition"
|
38 |
+
|
39 |
+
description = """
|
40 |
+
<p>
|
41 |
+
<center>
|
42 |
+
Savta Depth is a collaborative Open Source Data Science project for monocular depth estimation - Turn 2d photos into 3d photos. To test the model and code please check out the link bellow.
|
43 |
+
<img src="https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-300m-Urdu/resolve/main/Image/cover.jpg" alt="logo" width="250"/>
|
44 |
+
</center>
|
45 |
+
</p>
|
46 |
+
"""
|
47 |
+
article = "<p style='text-align: center'><a href='https://dagshub.com/OperationSavta/SavtaDepth' target='_blank'>SavtaDepth Project from OperationSavta</a></p><p style='text-align: center'><a href='https://colab.research.google.com/drive/1XU4DgQ217_hUMU1dllppeQNw3pTRlHy1?usp=sharing' target='_blank'>Google Colab Demo</a></p></center></p>"
|
48 |
+
|
49 |
+
examples = [["Sample/sample1.mp3"], ["Sample/sample2.mp3"], ["Sample/sample3.mp3"]]
|
50 |
+
|
51 |
+
|
52 |
+
Input = gr.inputs.Audio(
|
53 |
+
source="microphone",
|
54 |
+
type="filepath",
|
55 |
+
optional=True,
|
56 |
+
label="Please Record Your Voice",
|
57 |
+
)
|
58 |
+
Output = gr.outputs.Textbox(label="Urdu Script")
|
59 |
+
|
60 |
+
|
61 |
+
def main():
|
62 |
+
iface = gr.Interface(
|
63 |
+
asr,
|
64 |
+
Input,
|
65 |
+
Output,
|
66 |
+
title=title,
|
67 |
+
flagging_options=["incorrect", "worst", "ambiguous"],
|
68 |
+
allow_flagging="manual",
|
69 |
+
flagging_callback=hf_writer,
|
70 |
+
# description=description,
|
71 |
+
article=article,
|
72 |
+
examples=examples,
|
73 |
+
theme="peach",
|
74 |
+
)
|
75 |
+
|
76 |
+
iface.launch(enable_queue=True)
|
77 |
+
|
78 |
+
|
79 |
+
# enable_queue=True,auth=("admin", "pass1234")
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
main()
|
83 |
+
|
Images/cover.jpg
ADDED
Images/winner.png
ADDED
README.md
CHANGED
@@ -1,27 +1,38 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
Automatic Speech Recognition
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
|
8 |
It achieves the following results on the evaluation set:
|
|
|
9 |
- Loss: 0.9889
|
10 |
- Wer: 0.5607
|
11 |
- Cer: 0.2370
|
12 |
|
13 |
-
|
14 |
-
To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
|
15 |
|
16 |
-
|
17 |
-
python3 ./eval.py --model_id ./Model --dataset ./Data --config ur --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
18 |
-
```
|
19 |
|
20 |
```python
|
21 |
import torch
|
22 |
from datasets import load_dataset, Audio
|
23 |
from transformers import pipeline
|
24 |
-
import torchaudio.functional as F
|
25 |
model = "Model"
|
26 |
data = load_dataset("Data", "ur", split="test", delimiter="\t")
|
27 |
def path_adjust(batch):
|
@@ -38,9 +49,101 @@ prediction
|
|
38 |
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
|
39 |
```
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Urdu ASR SOTA
|
3 |
+
emoji: 👨🎤
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 2.8.11
|
8 |
+
app_file: App/app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
|
13 |
+
# Urdu Automatic Speech Recognition State of the Art Solution
|
14 |
|
15 |
+
![cover](Images/cover.jpg)
|
16 |
+
Automatic Speech Recognition using Facebook's wav2vec2-xls-r-300m model and mozilla-foundation common_voice_8_0 Urdu Dataset.
|
17 |
+
|
18 |
+
## Model Finetunning
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [common_voice dataset](https://commonvoice.mozilla.org/en/datasets).
|
21 |
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
|
24 |
- Loss: 0.9889
|
25 |
- Wer: 0.5607
|
26 |
- Cer: 0.2370
|
27 |
|
28 |
+
## Quick Prediction
|
|
|
29 |
|
30 |
+
Install all dependecies using `requirment.txt` file and then run bellow command to predict the text:
|
|
|
|
|
31 |
|
32 |
```python
|
33 |
import torch
|
34 |
from datasets import load_dataset, Audio
|
35 |
from transformers import pipeline
|
|
|
36 |
model = "Model"
|
37 |
data = load_dataset("Data", "ur", split="test", delimiter="\t")
|
38 |
def path_adjust(batch):
|
|
|
49 |
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
|
50 |
```
|
51 |
|
52 |
+
## Evaluation Commands
|
53 |
+
|
54 |
+
To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`, you can copy and past the command to the terminal.
|
55 |
+
|
56 |
+
```bash
|
57 |
+
python3 eval.py --model_id Model --dataset Data --config ur --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
58 |
+
```
|
59 |
+
|
60 |
+
**OR**
|
61 |
+
Run the simple shell script
|
62 |
+
|
63 |
+
```bash
|
64 |
+
bash run_eval.sh
|
65 |
+
```
|
66 |
+
|
67 |
+
## Language Model
|
68 |
+
|
69 |
+
[Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram)
|
70 |
+
|
71 |
+
- Get suitable Urdu text data for a language model
|
72 |
+
- Build an n-gram with KenLM
|
73 |
+
- Combine the n-gram with a fine-tuned Wav2Vec2 checkpoint
|
74 |
+
|
75 |
+
Install kenlm and pyctcdecode before running the notebook.
|
76 |
+
|
77 |
+
```bash
|
78 |
+
pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode
|
79 |
+
```
|
80 |
+
|
81 |
+
## Eval Results
|
82 |
+
|
83 |
+
| Without LM | With LM |
|
84 |
+
| ---------- | ------- |
|
85 |
+
| 56.21 | 46.37 |
|
86 |
+
|
87 |
+
## Directory Structure
|
88 |
+
|
89 |
+
```
|
90 |
+
<root directory>
|
91 |
+
|
|
92 |
+
.- README.md
|
93 |
+
|
|
94 |
+
.- Data/
|
95 |
+
|
|
96 |
+
.- Model/
|
97 |
+
|
|
98 |
+
.- Images/
|
99 |
+
|
|
100 |
+
.- Sample/
|
101 |
+
|
|
102 |
+
.- Gradio/
|
103 |
+
|
|
104 |
+
.- Eval Results/
|
105 |
+
|
|
106 |
+
.- With LM/
|
107 |
+
|
|
108 |
+
.- Without LM/
|
109 |
+
| ...
|
110 |
+
.- notebook.ipynb
|
111 |
+
|
|
112 |
+
.- run_eval.sh
|
113 |
+
|
|
114 |
+
.- eval.py
|
115 |
+
|
116 |
+
```
|
117 |
+
|
118 |
+
## Gradio App
|
119 |
+
|
120 |
+
## SOTA
|
121 |
+
|
122 |
+
- [x] Add Language Model
|
123 |
+
- [x] Webapp/API
|
124 |
+
- [] Denoise Audio
|
125 |
+
- [] Text Processing
|
126 |
+
- [] Spelling Mistakes
|
127 |
+
- [x] Hyperparameters optimization
|
128 |
+
- [] Training on 300 Epochs & 64 Batch Size
|
129 |
+
- [] Improved Language Model
|
130 |
+
- [] Contribute to Urdu ASR Audio Dataset
|
131 |
+
|
132 |
+
## Robust Speech Recognition Challenge 2022
|
133 |
+
|
134 |
+
This project was the results of HuggingFace [Robust Speech Recognition Challenge](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614). I was one of the winner with four state of the art ASR model. Check out my SOTA checkpoints.
|
135 |
+
|
136 |
+
- **[Urdu](https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-300m-Urdu)**
|
137 |
+
- **[Arabic](https://huggingface.co/kingabzpro/wav2vec2-large-xlsr-300-arabic)**
|
138 |
+
- **[Punjabi](https://huggingface.co/kingabzpro/wav2vec2-large-xlsr-53-punjabi)**
|
139 |
+
- **[Irish](https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-1b-Irish)**
|
140 |
+
|
141 |
+
![winner](Images/winner.png)
|
142 |
|
143 |
+
## References
|
144 |
|
145 |
+
- [Common Voice Dataset](https://commonvoice.mozilla.org/en/datasets)
|
146 |
+
- [Sequence Modeling With CTC](https://distill.pub/2017/ctc/)
|
147 |
+
- [Fine-tuning XLS-R for Multi-Lingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2)
|
148 |
+
- [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram)
|
149 |
+
- [HF Model](https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-300m-Urdu)
|
Sample/sample1.mp3
ADDED
Binary file (13 kB). View file
|
|
Sample/sample2.mp3
ADDED
Binary file (16.5 kB). View file
|
|
Sample/sample3.mp3
ADDED
Binary file (26 kB). View file
|
|