diff --git "a/notebook.ipynb" "b/notebook.ipynb" --- "a/notebook.ipynb" +++ "b/notebook.ipynb" @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -39,34 +39,7 @@ "id": "YELVqGxMxnbG", "outputId": "70b5afa4-6790-4c60-821b-dd6600c8e092" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Mon Mar 14 12:58:46 2022 \n", - "+-----------------------------------------------------------------------------+\n", - "| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |\n", - "|-------------------------------+----------------------+----------------------+\n", - "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", - "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", - "| | | MIG M. |\n", - "|===============================+======================+======================|\n", - "| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |\n", - "| N/A 62C P8 62W / 149W | 0MiB / 11441MiB | 0% Default |\n", - "| | | N/A |\n", - "+-------------------------------+----------------------+----------------------+\n", - " \n", - "+-----------------------------------------------------------------------------+\n", - "| Processes: |\n", - "| GPU GI CI PID Type Process name GPU Memory |\n", - "| ID ID Usage |\n", - "|=============================================================================|\n", - "| No running processes found |\n", - "+-----------------------------------------------------------------------------+\n" - ] - } - ], + "outputs": [], "source": [ "gpu_info = !nvidia-smi\n", "gpu_info = '\\n'.join(gpu_info)\n", @@ -87,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "c8eh87Hoee5d" }, @@ -108,14 +81,14 @@ }, { "cell_type": "code", - "source": [ - "!fds clone https://dagshub.com/kingabzpro/Urdu-ASR-SOTA.git /content/Urdu-ASR" - ], + "execution_count": null, "metadata": { "id": "7FRuaqUOVLCt" }, - "execution_count": 3, - "outputs": [] + "outputs": [], + "source": [ + "!fds clone https://dagshub.com/kingabzpro/Urdu-ASR-SOTA.git /content/Urdu-ASR" + ] }, { "cell_type": "markdown", @@ -206,9 +179,7 @@ }, { "cell_type": "code", - "source": [ - "%cd /content/Urdu-ASR" - ], + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -216,20 +187,14 @@ "id": "QypfbmGCXQrF", "outputId": "36f9026c-e027-4aac-cdf4-26e8ce7c46e8" }, - "execution_count": 4, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "/content/Urdu-ASR\n" - ] - } + "outputs": [], + "source": [ + "%cd /content/Urdu-ASR" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -237,18 +202,7 @@ "id": "2MMXcWFFgCXU", "outputId": "37926a80-2de4-4c17-b14a-994c2fdca267" }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Using custom data configuration Data-ce46ea826374b947\n", - "Reusing dataset csv (/root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519)\n", - "Using custom data configuration Data-ce46ea826374b947\n", - "Reusing dataset csv (/root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519)\n" - ] - } - ], + "outputs": [], "source": [ "from datasets import load_dataset, load_metric, Audio\n", "\n", @@ -268,7 +222,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "id": "kbyq6lDgQc2a" }, @@ -289,7 +243,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "id": "QL4nSK5yR-Qh" }, @@ -304,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "id": "72737oog2F6U" }, @@ -330,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -339,80 +293,7 @@ "id": "K_JUmf3G3b9S", "outputId": "e6ecb9f8-241b-451e-ae6d-14d8dbbc27cd" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
pathsentence
0common_voice_ur_26652628.mp3نوازشریف اب ایک نئے تعارف کے ساتھ سامنے آرہے ہیں۔
1common_voice_ur_26942382.mp3کوئی بات نہیں جی
2common_voice_ur_26562775.mp3نواز شریف سیاست میں کیسے کامیاب ہوئے؟
3common_voice_ur_26636794.mp3انہی کی نسل میں نبوت رہی۔
4common_voice_ur_26654547.mp3اسٹیٹ بینک کی مانیٹری پالیسی کا اعلان اج ہوگا
5common_voice_ur_27210016.mp3اوراسی کے وجود سے ریاست قائم ہے۔
6common_voice_ur_26703778.mp3پھر بھی تم لوگ بعض نہیں آتے ۔
7common_voice_ur_26623444.mp3بھارت میں انتہا پسندی بڑھے گی۔
8common_voice_ur_26652032.mp3آج کل تو مسلمان ممالک کی افواج استعمال ہوتی ہیں
9common_voice_ur_26652580.mp3اپنی شرٹ کے بٹن بند کرو
" - ] - }, - "metadata": {} - } - ], + "outputs": [], "source": [ "show_random_elements(common_voice_train, num_examples=10)" ] @@ -440,7 +321,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "id": "svKzVJ_hQGK6" }, @@ -469,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "id": "XIHocAuTQbBR" }, @@ -481,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -489,16 +370,7 @@ "id": "6dJq58N4SZ5f", "outputId": "e4e17870-62aa-46f8-eb2a-222164fd6032" }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Loading cached processed dataset at /root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/cache-ecdd8bc2b4f8f80f.arrow\n", - "Loading cached processed dataset at /root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/cache-72925588f0f072d7.arrow\n" - ] - } - ], + "outputs": [], "source": [ "common_voice_train = common_voice_train.map(normalize_text)\n", "common_voice_test = common_voice_test.map(normalize_text)" @@ -506,23 +378,20 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FwlkCjSHZ6T5" + }, + "outputs": [], "source": [ "def path_adjust(batch):\n", " batch[\"path\"] = \"Data/ur/clips/\"+str(batch[\"path\"])\n", " return batch" - ], - "metadata": { - "id": "FwlkCjSHZ6T5" - }, - "execution_count": 13, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "common_voice_train = common_voice_train.map(path_adjust)\n", - "common_voice_test = common_voice_test.map(path_adjust)" - ], + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -530,16 +399,10 @@ "id": "rWlDGlQwaWC-", "outputId": "90ecf72c-4bf4-476e-d749-ef2fa3c98ee0" }, - "execution_count": 14, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Loading cached processed dataset at /root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/cache-2f257b3b0c9bc0bf.arrow\n", - "Loading cached processed dataset at /root/.cache/huggingface/datasets/csv/Data-ce46ea826374b947/0.0.0/433e0ccc46f9880962cc2b12065189766fbb2bee57a221866138fb9203c83519/cache-b0c43394ff8bd05f.arrow\n" - ] - } + "outputs": [], + "source": [ + "common_voice_train = common_voice_train.map(path_adjust)\n", + "common_voice_test = common_voice_test.map(path_adjust)" ] }, { @@ -553,7 +416,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -562,69 +425,7 @@ "id": "RBDRAAYxRE6n", "outputId": "51d58128-c199-48d9-d201-b9d2500a9053" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
sentence
0اپنی طرف توجہ مبذول کروانا پسند نہیں کرتا
1نان کمرشل موضوع ہونے کے باوجود
2تمل
3لگائے جا رہے ہیں
4اچھی بھی نہیں لگتی
5یہ مقدر نہیں بدلتی
6ترقیاتی کاموں کے لیے بجٹ کی خطیر رقم مختص کی گئی ہے
7ازوریس کا معیاری وقت
8لیکن ٹانکا لگانا کوئی ان سے سیکھے
9آسٹریلیا
" - ] - }, - "metadata": {} - } - ], + "outputs": [], "source": [ "show_random_elements(common_voice_train.remove_columns([\"path\"]))" ] @@ -644,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "id": "LwCshNbbeRZR" }, @@ -658,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -691,36 +492,7 @@ "id": "_m6uUjjcfbjH", "outputId": "09f290ad-ef91-425a-f16a-5f265ee679d6" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - " 0%| | 0/1 [00:00\"] = len(vocab_dict)\n", "vocab_dict[\"\"] = len(vocab_dict)\n", @@ -896,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "id": "ehyUoh9vk191" }, @@ -918,7 +616,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": { "id": "xriFGEWQkO4M" }, @@ -980,7 +678,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": { "id": "kAR0-2KLkopp" }, @@ -1004,7 +702,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { "id": "KYZtoW-tlZgl" }, @@ -1059,7 +757,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { "id": "rrv65aj7G95i" }, @@ -1080,7 +778,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1088,21 +786,7 @@ "id": "aKtkc1o_HWHC", "outputId": "41f7071a-7a05-493d-cf3e-96708c4fec59" }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{'array': array([ 0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 9.434595e-06,\n", - " -3.136347e-04, -3.876609e-04], dtype=float32),\n", - " 'path': 'Data/ur/clips/common_voice_ur_26630004.mp3',\n", - " 'sampling_rate': 16000}" - ] - }, - "metadata": {}, - "execution_count": 30 - } - ], + "outputs": [], "source": [ "common_voice_train[0][\"path\"]" ] @@ -1120,7 +804,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1129,33 +813,7 @@ "id": "dueM6U7Ev0OA", "outputId": "9d0fce47-1d84-4f67-d190-9ec58f0d7c0b" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "ناشتے کے بعد سب تیار ہو گئے\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - " \n", - " " - ] - }, - "metadata": {}, - "execution_count": 31 - } - ], + "outputs": [], "source": [ "import IPython.display as ipd\n", "import numpy as np\n", @@ -1191,7 +849,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1199,17 +857,7 @@ "id": "1Po2g7YPuRTx", "outputId": "ee7c2161-39c7-4782-ed01-f799ff8800ef" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Target text: دنیا کے فیصلے دیگر قومیں کررہی ہیں\n", - "Input array shape: (67392,)\n", - "Sampling rate: 16000\n" - ] - } - ], + "outputs": [], "source": [ "rand_int = random.randint(0, len(common_voice_train)-1)\n", "\n", @@ -1245,7 +893,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": { "id": "eJY7I0XAwe9p" }, @@ -1274,7 +922,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1307,36 +955,7 @@ "id": "-np9xYK-wl8q", "outputId": "1b0dfd2f-1eb3-4c45-c0cf-34bcf6976093" }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "0ex [00:00, ?ex/s]" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "1149c8d876b8434db67f23f8d0cf4e54" - } - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "0ex [00:00, ?ex/s]" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "7d780bbaf63c4398bcb4cdd7b7a420f8" - } - }, - "metadata": {} - } - ], + "outputs": [], "source": [ "common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names)\n", "common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names)" @@ -1362,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": { "id": "tdHfbUJ_09iA" }, @@ -1418,7 +1037,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { "id": "tborvC9hx88e" }, @@ -1478,7 +1097,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": { "id": "lbQf5GuZyQ4_" }, @@ -1499,7 +1118,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": { "id": "9Xsux2gmyXso" }, @@ -1523,7 +1142,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": { "id": "1XZ-kjweyTy_" }, @@ -1559,27 +1178,15 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": { - "id": "e7cqAWIayn6w", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "e7cqAWIayn6w", "outputId": "be39113a-c3aa-44b9-d154-90c8b6439717" }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['quantizer.weight_proj.weight', 'quantizer.weight_proj.bias', 'quantizer.codevectors', 'project_hid.weight', 'project_q.weight', 'project_q.bias', 'project_hid.bias']\n", - "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", - "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", - "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n", - "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" - ] - } - ], + "outputs": [], "source": [ "from transformers import Wav2Vec2ForCTC\n", "\n", @@ -1610,24 +1217,15 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": { - "id": "oGI8zObtZ3V0", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "oGI8zObtZ3V0", "outputId": "5972978a-f8c8-4ff8-c6f2-41113ef3c56f" }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.7/dist-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1712: FutureWarning: The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5.Please use the equivalent `freeze_feature_encoder` method instead.\n", - " FutureWarning,\n" - ] - } - ], + "outputs": [], "source": [ "model.freeze_feature_extractor()" ] @@ -1652,20 +1250,20 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Xzn6034AOaUT" + }, + "outputs": [], "source": [ "import os\n", "os.environ['MLFLOW_TRACKING_USERNAME'] = \"kingabzpro\"\n", "os.environ['MLFLOW_TRACKING_PASSWORD'] = \"\"" - ], - "metadata": { - "id": "Xzn6034AOaUT" - }, - "execution_count": 43, - "outputs": [] + ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": { "id": "KbeKSV7uzGPP" }, @@ -1676,18 +1274,18 @@ "training_args = TrainingArguments(\n", " output_dir=\"Model\",\n", " group_by_length=True,\n", - " per_device_train_batch_size=16,\n", + " per_device_train_batch_size=32,\n", " gradient_accumulation_steps=2,\n", " evaluation_strategy=\"steps\",\n", - " num_train_epochs=30,\n", + " num_train_epochs=200,\n", " gradient_checkpointing=True,\n", - " fp16=False,\n", - " save_steps=300,\n", - " eval_steps=300,\n", - " logging_steps=300,\n", + " fp16=True,\n", + " save_steps=400,\n", + " eval_steps=400,\n", + " logging_steps=400,\n", " learning_rate=1e-4,\n", " warmup_steps=1000,\n", - " save_total_limit=1,\n", + " save_total_limit=2,\n", ")" ] }, @@ -1702,18 +1300,18 @@ }, { "cell_type": "code", - "source": [ - "from transformers.integrations import TensorBoardCallback,MLflowCallback" - ], + "execution_count": null, "metadata": { "id": "zp7scktZJIBd" }, - "execution_count": 46, - "outputs": [] + "outputs": [], + "source": [ + "from transformers.integrations import TensorBoardCallback,MLflowCallback" + ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1721,18 +1319,7 @@ "id": "rY7vBmFCPFgC", "outputId": "b80818ca-d083-408d-a382-0b4902107815" }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "You are adding a to the callbacks of this Trainer, but there is already one. The currentlist of callbacks is\n", - ":DefaultFlowCallback\n", - "MLflowCallback\n", - "TensorBoardCallback\n" - ] - } - ], + "outputs": [], "source": [ "from transformers import Trainer\n", "\n", @@ -1751,9 +1338,7 @@ }, { "cell_type": "code", - "source": [ - "trainer.get_optimizer_cls_and_kwargs(training_args)" - ], + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1761,31 +1346,21 @@ "id": "Bq9tPZVg92pW", "outputId": "0f02a82a-f9e5-4dab-8711-7d0151423d7c" }, - "execution_count": 48, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(transformers.optimization.AdamW,\n", - " {'betas': (0.9, 0.999), 'eps': 1e-08, 'lr': 0.0001})" - ] - }, - "metadata": {}, - "execution_count": 48 - } + "outputs": [], + "source": [ + "trainer.get_optimizer_cls_and_kwargs(training_args)" ] }, { "cell_type": "code", - "source": [ - "trainer.remove_callback(TensorBoardCallback)" - ], + "execution_count": null, "metadata": { "id": "gUZbbfa3MWfW" }, - "execution_count": 49, - "outputs": [] + "outputs": [], + "source": [ + "trainer.remove_callback(TensorBoardCallback)" + ] }, { "cell_type": "markdown", @@ -1813,49 +1388,49 @@ }, { "cell_type": "code", - "source": [ - "import mlflow" - ], + "execution_count": null, "metadata": { "id": "rWlS5WsqIWPF" }, - "execution_count": 44, - "outputs": [] + "outputs": [], + "source": [ + "import mlflow" + ] }, { "cell_type": "code", - "source": [ - "# mlflow.delete_run(\"d4caf8e76ce14040b0c8ccf3f306f89d\")" - ], + "execution_count": null, "metadata": { "id": "Ionf-3KGuzXY" }, - "execution_count": 56, - "outputs": [] + "outputs": [], + "source": [ + "# mlflow.delete_run(\"d4caf8e76ce14040b0c8ccf3f306f89d\")" + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dBgk8Uaw1BqC" + }, + "outputs": [], "source": [ "# mlflow.set_experiment(experiment_id=0)\n", "# with mlflow.start_run(run_id=\"2a28fb02c3ce4670997d5303f0de7118\") as run:\n", "# mlflow.set_tag('mlflow.source.git.commit', \"d316332f0def9d679491b81b2b35aee7bbf21457\") " - ], - "metadata": { - "id": "dBgk8Uaw1BqC" - }, - "execution_count": 52, - "outputs": [] + ] }, { "cell_type": "code", - "source": [ - "# mlflow.end_run()" - ], + "execution_count": null, "metadata": { "id": "ccHvQwNw1taG" }, - "execution_count": 58, - "outputs": [] + "outputs": [], + "source": [ + "# mlflow.end_run()" + ] }, { "cell_type": "code", @@ -1868,138 +1443,7 @@ "id": "9fRr9TG5pGBl", "outputId": "ab7bf491-44e6-4dba-c42f-af33e6b56f06" }, - "outputs": [ - { - "metadata": { - "tags": null - }, - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n", - "***** Running training *****\n", - " Num examples = 2080\n", - " Num Epochs = 30\n", - " Instantaneous batch size per device = 16\n", - " Total train batch size (w. parallel, distributed & accumulation) = 32\n", - " Gradient Accumulation steps = 2\n", - " Total optimization steps = 1950\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " [ 473/1950 1:36:01 < 5:01:08, 0.08 it/s, Epoch 7.26/30]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining LossValidation LossWerCer
30010.2385004.0677671.0000001.000000

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "metadata": { - "tags": null - }, - "name": "stderr", - "output_type": "stream", - "text": [ - "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n", - "***** Running Evaluation *****\n", - " Num examples = 341\n", - " Batch size = 8\n", - "Saving model checkpoint to Model/checkpoint-300\n", - "Configuration saved in Model/checkpoint-300/config.json\n", - "Model weights saved in Model/checkpoint-300/pytorch_model.bin\n", - "Feature extractor saved in Model/checkpoint-300/preprocessor_config.json\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "text/html": [ - "\n", - "

\n", - " \n", - " \n", - " [ 862/1950 2:54:51 < 3:41:13, 0.08 it/s, Epoch 13.25/30]\n", - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
StepTraining LossValidation LossWerCer
30010.2385004.0677671.0000001.000000
6003.3477003.2046021.0000001.000000

" - ] - }, - "metadata": {} - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n", - "***** Running Evaluation *****\n", - " Num examples = 341\n", - " Batch size = 8\n", - "Saving model checkpoint to Model/checkpoint-600\n", - "Configuration saved in Model/checkpoint-600/config.json\n", - "Model weights saved in Model/checkpoint-600/pytorch_model.bin\n", - "Feature extractor saved in Model/checkpoint-600/preprocessor_config.json\n", - "Deleting older checkpoint [Model/checkpoint-300] due to args.save_total_limit\n" - ] - } - ], + "outputs": [], "source": [ "mlflow.set_tracking_uri(\"https://dagshub.com/kingabzpro/Urdu-ASR-SOTA.mlflow\")\n", "# mlflow.set_tag('mlflow.source.git.commit', \"d316332f0def9d679491b81b2b35aee7bbf21457\") \n", @@ -2027,6 +1471,11 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "m6w5pWkLT5qn" + }, + "outputs": [], "source": [ "import dagshub\n", "\n", @@ -2034,26 +1483,21 @@ " logger.log_hyperparams(model_class=\"wav2vec2-xls-r-300m\")\n", " logger.log_hyperparams(training_args.to_dict())\n", " logger.log_metrics(trainer.evaluate())" - ], - "metadata": { - "id": "m6w5pWkLT5qn" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ElIer3iRbzEh" + }, + "outputs": [], "source": [ "!dvc remote add origin https://dagshub.com/kingabzpro/Urdu-ASR-SOTA.dvc\n", "!dvc remote modify origin --local auth basic\n", "!dvc remote modify origin --local user kingabzpro\n", - "!dvc remote modify origin --local password 3e05bcfce59b35d8e16ecd5a0023b08afefc9756" - ], - "metadata": { - "id": "ElIer3iRbzEh" - }, - "execution_count": null, - "outputs": [] + "!dvc remote modify origin --local password " + ] }, { "cell_type": "code", @@ -2095,32 +1539,10 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "f36ef2953a78471f83668cc5b2dd3939": { + "005bfde85ca84ac2baeecca8b29e8128": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ddead8fbf3c049d9ba2f9230d3679dcd", - "IPY_MODEL_b7b3f286421e4dfc9c31f6773f41a476", - "IPY_MODEL_44ba7b2c76c34d3ca9a18b55cc22e1d0" - ], - "layout": "IPY_MODEL_972c7d2625c941aebcb703a05f36707d" - } - }, - "ddead8fbf3c049d9ba2f9230d3679dcd": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2132,40 +1554,68 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fc082dad8009470aa0941f04b95a3dcc", + "layout": "IPY_MODEL_3bd607444dc6462089423e0044c49e16", "placeholder": "​", - "style": "IPY_MODEL_184cd1a0e9ae44c1a2800cb34cf21f6e", - "value": "100%" + "style": "IPY_MODEL_8c4a4c3b2c4441b1b945d249b2c3d765", + "value": "" } }, - "b7b3f286421e4dfc9c31f6773f41a476": { + "0802e170d72e4ff999697bf8ffd2c597": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e954f23548624e6dabd8416652033d82", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e465fc21596a4e8ca0a88785135342f2", - "value": 1 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "44ba7b2c76c34d3ca9a18b55cc22e1d0": { + "1149c8d876b8434db67f23f8d0cf4e54": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_acdbfc9bae2f40689944317666bd33ba", + "IPY_MODEL_80cbdf747dfe45939c266bf31e7042d8", + "IPY_MODEL_a19d35352882473e88e7cd9900f04b18" + ], + "layout": "IPY_MODEL_5bd22dfd12084f1381137dc9bf0d26eb" + } + }, + "184cd1a0e9ae44c1a2800cb34cf21f6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2e52b247ac7140e1b009141a20e0e4e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2177,16 +1627,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_818ee624f78949d89d9a5db63c5d6d57", + "layout": "IPY_MODEL_9d951e2829464ae3bcbd596352e3af2d", "placeholder": "​", - "style": "IPY_MODEL_0802e170d72e4ff999697bf8ffd2c597", - "value": " 1/1 [00:00<00:00, 11.10ba/s]" + "style": "IPY_MODEL_e6ae489f1dcf48eb9f154dfc4a6e38a7", + "value": " 341/? [00:02<00:00, 113.05ex/s]" } }, - "972c7d2625c941aebcb703a05f36707d": { + "3bd607444dc6462089423e0044c49e16": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2235,10 +1685,31 @@ "width": null } }, - "fc082dad8009470aa0941f04b95a3dcc": { + "44ba7b2c76c34d3ca9a18b55cc22e1d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_818ee624f78949d89d9a5db63c5d6d57", + "placeholder": "​", + "style": "IPY_MODEL_0802e170d72e4ff999697bf8ffd2c597", + "value": " 1/1 [00:00<00:00, 11.10ba/s]" + } + }, + "5379091c1a344d9382b4fd50e675b11e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2284,28 +1755,13 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "184cd1a0e9ae44c1a2800cb34cf21f6e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "width": "20px" } }, - "e954f23548624e6dabd8416652033d82": { + "5411fe5b9c994caeacb21abd6bd82374": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2354,26 +1810,10 @@ "width": null } }, - "e465fc21596a4e8ca0a88785135342f2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "818ee624f78949d89d9a5db63c5d6d57": { + "5bd22dfd12084f1381137dc9bf0d26eb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2422,25 +1862,10 @@ "width": null } }, - "0802e170d72e4ff999697bf8ffd2c597": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, "68175a4447a749a8a795355c8d1760f5": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2459,10 +1884,26 @@ "layout": "IPY_MODEL_c10ec5576e4540e2b3a80687c6a35203" } }, + "6b75b166f7fc4a71b710f6be726a955b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, "74a4b915a4c14c9f88c6c6915fef43aa": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2480,10 +1921,47 @@ "value": "100%" } }, - "d3ee69375f624322945585683abd15d0": { + "7888cf9b3dd04c6e86be0cc691915063": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7d780bbaf63c4398bcb4cdd7b7a420f8": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_005bfde85ca84ac2baeecca8b29e8128", + "IPY_MODEL_be3bfc1639014762af07c228030d2f49", + "IPY_MODEL_2e52b247ac7140e1b009141a20e0e4e0" + ], + "layout": "IPY_MODEL_9be9f0c4290a446c883bfce80da460fe" + } + }, + "80cbdf747dfe45939c266bf31e7042d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2496,18 +1974,70 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_957c2385c4d9492889dd1e563059a2eb", + "layout": "IPY_MODEL_b58e9a584f734e718a857cdbdb671cba", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_bd9423d7fd79440cba90b829e9f83f37", + "style": "IPY_MODEL_e21e3d3ba70147b09dd025986c88264d", "value": 1 } }, + "818ee624f78949d89d9a5db63c5d6d57": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, "8a4f576b565940f48ee0141337eea9ad": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2525,10 +2055,25 @@ "value": " 1/1 [00:00<00:00, 21.88ba/s]" } }, - "c10ec5576e4540e2b3a80687c6a35203": { + "8c4a4c3b2c4441b1b945d249b2c3d765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "957c2385c4d9492889dd1e563059a2eb": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2577,10 +2122,10 @@ "width": null } }, - "cadb48a2a4f140bab83864f9a8bdc101": { + "972c7d2625c941aebcb703a05f36707d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2629,25 +2174,10 @@ "width": null } }, - "da985e2f1e604db69cffa3029b8ef3fa": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "957c2385c4d9492889dd1e563059a2eb": { + "9be9f0c4290a446c883bfce80da460fe": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2696,26 +2226,10 @@ "width": null } }, - "bd9423d7fd79440cba90b829e9f83f37": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ed41e4dfba004526926e7f902b9bd4be": { + "9d951e2829464ae3bcbd596352e3af2d": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2764,47 +2278,10 @@ "width": null } }, - "b720ea4e8f574bf9963d7a587fddcb1e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1149c8d876b8434db67f23f8d0cf4e54": { + "a19d35352882473e88e7cd9900f04b18": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_acdbfc9bae2f40689944317666bd33ba", - "IPY_MODEL_80cbdf747dfe45939c266bf31e7042d8", - "IPY_MODEL_a19d35352882473e88e7cd9900f04b18" - ], - "layout": "IPY_MODEL_5bd22dfd12084f1381137dc9bf0d26eb" - } - }, - "acdbfc9bae2f40689944317666bd33ba": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2816,40 +2293,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5411fe5b9c994caeacb21abd6bd82374", + "layout": "IPY_MODEL_e11b5cd77825455587255870b5bfbd52", "placeholder": "​", - "style": "IPY_MODEL_c80c0d69b86f470d8f5e9922d696404d", - "value": "" + "style": "IPY_MODEL_7888cf9b3dd04c6e86be0cc691915063", + "value": " 2080/? [00:29<00:00, 88.42ex/s]" } }, - "80cbdf747dfe45939c266bf31e7042d8": { + "acdbfc9bae2f40689944317666bd33ba": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b58e9a584f734e718a857cdbdb671cba", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e21e3d3ba70147b09dd025986c88264d", - "value": 1 - } - }, - "a19d35352882473e88e7cd9900f04b18": { - "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -2861,16 +2314,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e11b5cd77825455587255870b5bfbd52", + "layout": "IPY_MODEL_5411fe5b9c994caeacb21abd6bd82374", "placeholder": "​", - "style": "IPY_MODEL_7888cf9b3dd04c6e86be0cc691915063", - "value": " 2080/? [00:29<00:00, 88.42ex/s]" + "style": "IPY_MODEL_c80c0d69b86f470d8f5e9922d696404d", + "value": "" } }, - "5bd22dfd12084f1381137dc9bf0d26eb": { + "b58e9a584f734e718a857cdbdb671cba": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2916,80 +2369,92 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "20px" } }, - "5411fe5b9c994caeacb21abd6bd82374": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", + "b720ea4e8f574bf9963d7a587fddcb1e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "description_width": "" + } + }, + "b7b3f286421e4dfc9c31f6773f41a476": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e954f23548624e6dabd8416652033d82", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e465fc21596a4e8ca0a88785135342f2", + "value": 1 } }, - "c80c0d69b86f470d8f5e9922d696404d": { + "bd9423d7fd79440cba90b829e9f83f37": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "b58e9a584f734e718a857cdbdb671cba": { + "be3bfc1639014762af07c228030d2f49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5379091c1a344d9382b4fd50e675b11e", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b75b166f7fc4a71b710f6be726a955b", + "value": 1 + } + }, + "c10ec5576e4540e2b3a80687c6a35203": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3035,29 +2500,28 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "e21e3d3ba70147b09dd025986c88264d": { + "c80c0d69b86f470d8f5e9922d696404d": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "e11b5cd77825455587255870b5bfbd52": { + "cadb48a2a4f140bab83864f9a8bdc101": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3106,68 +2570,10 @@ "width": null } }, - "7888cf9b3dd04c6e86be0cc691915063": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7d780bbaf63c4398bcb4cdd7b7a420f8": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_005bfde85ca84ac2baeecca8b29e8128", - "IPY_MODEL_be3bfc1639014762af07c228030d2f49", - "IPY_MODEL_2e52b247ac7140e1b009141a20e0e4e0" - ], - "layout": "IPY_MODEL_9be9f0c4290a446c883bfce80da460fe" - } - }, - "005bfde85ca84ac2baeecca8b29e8128": { + "d3ee69375f624322945585683abd15d0": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3bd607444dc6462089423e0044c49e16", - "placeholder": "​", - "style": "IPY_MODEL_8c4a4c3b2c4441b1b945d249b2c3d765", - "value": "" - } - }, - "be3bfc1639014762af07c228030d2f49": { - "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3180,18 +2586,33 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5379091c1a344d9382b4fd50e675b11e", + "layout": "IPY_MODEL_957c2385c4d9492889dd1e563059a2eb", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6b75b166f7fc4a71b710f6be726a955b", + "style": "IPY_MODEL_bd9423d7fd79440cba90b829e9f83f37", "value": 1 } }, - "2e52b247ac7140e1b009141a20e0e4e0": { + "da985e2f1e604db69cffa3029b8ef3fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddead8fbf3c049d9ba2f9230d3679dcd": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3203,16 +2624,16 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9d951e2829464ae3bcbd596352e3af2d", + "layout": "IPY_MODEL_fc082dad8009470aa0941f04b95a3dcc", "placeholder": "​", - "style": "IPY_MODEL_e6ae489f1dcf48eb9f154dfc4a6e38a7", - "value": " 341/? [00:02<00:00, 113.05ex/s]" + "style": "IPY_MODEL_184cd1a0e9ae44c1a2800cb34cf21f6e", + "value": "100%" } }, - "9be9f0c4290a446c883bfce80da460fe": { + "e11b5cd77825455587255870b5bfbd52": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3261,10 +2682,57 @@ "width": null } }, - "3bd607444dc6462089423e0044c49e16": { + "e21e3d3ba70147b09dd025986c88264d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e465fc21596a4e8ca0a88785135342f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e6ae489f1dcf48eb9f154dfc4a6e38a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e954f23548624e6dabd8416652033d82": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3313,25 +2781,10 @@ "width": null } }, - "8c4a4c3b2c4441b1b945d249b2c3d765": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5379091c1a344d9382b4fd50e675b11e": { + "ed41e4dfba004526926e7f902b9bd4be": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3377,29 +2830,35 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null } }, - "6b75b166f7fc4a71b710f6be726a955b": { + "f36ef2953a78471f83668cc5b2dd3939": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ddead8fbf3c049d9ba2f9230d3679dcd", + "IPY_MODEL_b7b3f286421e4dfc9c31f6773f41a476", + "IPY_MODEL_44ba7b2c76c34d3ca9a18b55cc22e1d0" + ], + "layout": "IPY_MODEL_972c7d2625c941aebcb703a05f36707d" } }, - "9d951e2829464ae3bcbd596352e3af2d": { + "fc082dad8009470aa0941f04b95a3dcc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3447,25 +2906,10 @@ "visibility": null, "width": null } - }, - "e6ae489f1dcf48eb9f154dfc4a6e38a7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } } } } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +}