import os from datasets import load_dataset, Audio from transformers import pipeline import gradio as gr ############### HF ########################### HF_TOKEN = os.getenv("HF_TOKEN") hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Urdu-ASR-flags") ############## DVC ################################ PROD_MODEL_PATH = "Model" if os.path.isdir(".dvc"): print("Running DVC") os.system("dvc config cache.type copy") os.system("dvc config core.no_scm true") if os.system(f"dvc pull {PROD_MODEL_PATH}") != 0: exit("dvc pull failed") os.system("rm -r .dvc") # .apt/usr/lib/dvc ############## Inference ############################## def asr(audio): asr = pipeline("automatic-speech-recognition", model=model) prediction = asr(audio, chunk_length_s=5, stride_length_s=1) return prediction ################### Gradio Web APP ################################ title = "Urdu Automatic Speech Recognition" description = """