|
from fastapi import FastAPI, Request, Form |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.templating import Jinja2Templates |
|
import numpy as np |
|
import skops.io as sio |
|
import joblib |
|
|
|
app = FastAPI() |
|
templates = Jinja2Templates(directory="app/templates") |
|
|
|
|
|
model = sio.load("models/water_quality_model.skops") |
|
preprocessing_pipeline = joblib.load("models/scaler.joblib") |
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def home(request: Request): |
|
return templates.TemplateResponse("form.html", {"request": request}) |
|
|
|
|
|
@app.post("/predict", response_class=HTMLResponse) |
|
async def predict( |
|
request: Request, |
|
ph: float = Form(...), |
|
Hardness: float = Form(...), |
|
Solids: float = Form(...), |
|
Chloramines: float = Form(...), |
|
Sulfate: float = Form(...), |
|
Conductivity: float = Form(...), |
|
Organic_carbon: float = Form(...), |
|
Trihalomethanes: float = Form(...), |
|
Turbidity: float = Form(...), |
|
): |
|
input_data = np.array( |
|
[ |
|
[ |
|
ph, |
|
Hardness, |
|
Solids, |
|
Chloramines, |
|
Sulfate, |
|
Conductivity, |
|
Organic_carbon, |
|
Trihalomethanes, |
|
Turbidity, |
|
] |
|
] |
|
) |
|
|
|
input_preprocessed = preprocessing_pipeline.transform(input_data) |
|
prediction = model.predict(input_preprocessed) |
|
result = "Potable" if prediction[0] == 1 else "Not Potable" |
|
return templates.TemplateResponse( |
|
"result.html", {"request": request, "result": result} |
|
) |
|
|