Catherine Breslin
Clustering
30b1966
raw
history blame
2.02 kB
import streamlit as st
import nltk
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from scipy.spatial.distance import cosine
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
def cluster_examples(messages, embed, nc=3):
km = KMeans(
n_clusters=nc, init='random',
n_init=10, max_iter=300,
tol=1e-04, random_state=0
)
km = km.fit_predict(embed)
for n in range(nc):
idxs = [i for i in range(len(km)) if km[i] == n]
ms = [messages[i] for i in idxs]
st.markdown ("CLUSTER : %d"%n)
for m in ms:
st.markdown (m)
def plot_heatmap(labels, heatmap, rotation=90):
sns.set(font_scale=1.2)
fig, ax = plt.subplots()
g = sns.heatmap(
heatmap,
xticklabels=labels,
yticklabels=labels,
vmin=-1,
vmax=1,
cmap="coolwarm")
g.set_xticklabels(labels, rotation=rotation)
g.set_title("Textual Similarity")
st.pyplot(fig)
#plt.show()
st.header("Sentence Similarity Demo")
st.markdown("This demo uses the sentence_transformers library to plot sentence similarity between a list of sentences. Change the text below and try for yourself!")
# Streamlit text boxes
text = st.text_area('Enter sentences:', value="The sun is hotter than the moon.\nThe sun is very bright.\nI hear that the universe is very large.\nToday is Tuesday.")
nc = st.slider('Select a number of clusters', min_value=1, max_value=15, value=3)
# Model setup
model = SentenceTransformer('paraphrase-distilroberta-base-v1')
nltk.download('punkt')
# Run model
if text:
sentences = nltk.tokenize.sent_tokenize(text)
embed = model.encode(sentences)
sim = np.zeros([len(embed), len(embed)])
for i,em in enumerate(embed):
for j,ea in enumerate(embed):
sim[i][j] = 1.0-cosine(em,ea)
plot_heatmap(sentences, sim)
st.subheader("Results from K-Means Clustering")
cluster_examples(sentences, embed, nc)