Spaces:
Running
Running
Kevin King
commited on
Commit
Β·
ea6ec54
1
Parent(s):
b18efa0
REFAC: Update model loading to use staged approach and enhance audio analysis in Streamlit app
Browse files- src/streamlit_app.py +273 -180
src/streamlit_app.py
CHANGED
@@ -38,10 +38,10 @@ SER_TO_UNIFIED = {'neu': 'neutral', 'hap': 'happy', 'sad': 'sad', 'ang': 'angry'
|
|
38 |
FACIAL_TO_UNIFIED = {'neutral': 'neutral', 'happy': 'happy', 'sad': 'sad', 'angry': 'angry', 'fear':None, 'surprise':None, 'disgust':None}
|
39 |
AUDIO_SAMPLE_RATE = 16000
|
40 |
|
41 |
-
# --- Model Loading ---
|
42 |
@st.cache_resource
|
43 |
-
def
|
44 |
-
with st.spinner("Loading
|
45 |
whisper_model = whisper.load_model("tiny.en", download_root=os.path.join(CACHE_DIR, "whisper"))
|
46 |
text_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
|
47 |
ser_model_name = "superb/hubert-large-superb-er"
|
@@ -49,7 +49,7 @@ def load_models():
|
|
49 |
ser_model = AutoModelForAudioClassification.from_pretrained(ser_model_name)
|
50 |
return whisper_model, text_classifier, ser_model, ser_feature_extractor
|
51 |
|
52 |
-
|
53 |
|
54 |
# --- Helper Functions for Analysis ---
|
55 |
def create_unified_vector(scores_dict, mapping_dict):
|
@@ -72,203 +72,296 @@ def get_consistency_level(cosine_sim):
|
|
72 |
if cosine_sim >= 0.3: return "Low"
|
73 |
return "Very Low"
|
74 |
|
75 |
-
# ---
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
full_transcription = "No speech detected."
|
90 |
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
|
104 |
-
if isinstance(analysis, list) and len(analysis) > 0:
|
105 |
-
fer_timeline[timestamp] = {k: v / 100.0 for k, v in analysis[0]['emotion'].items()}
|
106 |
-
frame_count += 1
|
107 |
-
cap.release()
|
108 |
-
|
109 |
-
with st.spinner("Analyzing audio and text..."):
|
110 |
-
if video_clip_for_duration.audio:
|
111 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as taudio:
|
112 |
-
video_clip_for_duration.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
|
113 |
-
temp_audio_path = taudio.name
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if audio_array.ndim == 2: audio_array = audio_array.mean(axis=1)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
logits = ser_model(**inputs).logits
|
134 |
-
scores = torch.nn.functional.softmax(logits, dim=1).squeeze()
|
135 |
-
ser_timeline[i] = {ser_model.config.id2label[k]: score.item() for k, score in enumerate(scores)}
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
text_emotions = text_classifier(segment_text)[0]
|
141 |
-
ter_timeline[i] = {emo['label']: emo['score'] for emo in text_emotions}
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
for raw_col in df.columns:
|
150 |
-
unified_col = mapping.get(raw_col)
|
151 |
-
if unified_col:
|
152 |
-
df_unified[unified_col] += df[raw_col]
|
153 |
-
return df_unified
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
dominant_text = get_dominant_emotion_from_df(ter_df)
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
with col2:
|
198 |
-
st.subheader("Unified Emotion Timeline")
|
199 |
|
200 |
-
|
201 |
-
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
eci_series = pd.Series(eci_timeline).reindex(full_index).interpolate(method='linear')
|
237 |
-
combined_df['ECI'] = eci_series
|
238 |
-
|
239 |
-
combined_df.fillna(0, inplace=True)
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
if
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
pass
|
|
|
38 |
FACIAL_TO_UNIFIED = {'neutral': 'neutral', 'happy': 'happy', 'sad': 'sad', 'angry': 'angry', 'fear':None, 'surprise':None, 'disgust':None}
|
39 |
AUDIO_SAMPLE_RATE = 16000
|
40 |
|
41 |
+
# --- Model Loading (Staged) ---
|
42 |
@st.cache_resource
|
43 |
+
def load_audio_models():
|
44 |
+
with st.spinner("Loading audio analysis models..."):
|
45 |
whisper_model = whisper.load_model("tiny.en", download_root=os.path.join(CACHE_DIR, "whisper"))
|
46 |
text_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
|
47 |
ser_model_name = "superb/hubert-large-superb-er"
|
|
|
49 |
ser_model = AutoModelForAudioClassification.from_pretrained(ser_model_name)
|
50 |
return whisper_model, text_classifier, ser_model, ser_feature_extractor
|
51 |
|
52 |
+
# Models will be loaded on demand
|
53 |
|
54 |
# --- Helper Functions for Analysis ---
|
55 |
def create_unified_vector(scores_dict, mapping_dict):
|
|
|
72 |
if cosine_sim >= 0.3: return "Low"
|
73 |
return "Very Low"
|
74 |
|
75 |
+
# --- Helper Functions for Results Display ---
|
76 |
+
def process_timeline_to_df(timeline, mapping):
|
77 |
+
if not timeline: return pd.DataFrame(columns=UNIFIED_EMOTIONS)
|
78 |
+
df = pd.DataFrame.from_dict(timeline, orient='index')
|
79 |
+
df_unified = pd.DataFrame(index=df.index, columns=UNIFIED_EMOTIONS).fillna(0.0)
|
80 |
+
for raw_col in df.columns:
|
81 |
+
unified_col = mapping.get(raw_col)
|
82 |
+
if unified_col:
|
83 |
+
df_unified[unified_col] += df[raw_col]
|
84 |
+
return df_unified
|
85 |
|
86 |
+
def get_dominant_emotion_from_df(df):
|
87 |
+
if df.empty or df.sum().sum() == 0: return "N/A"
|
88 |
+
return df.sum().idxmax().capitalize()
|
89 |
|
90 |
+
def get_avg_unified_scores(df):
|
91 |
+
return df.mean().to_dict() if not df.empty else {}
|
|
|
92 |
|
93 |
+
def display_results():
|
94 |
+
"""Display the final analysis results using data from session state"""
|
95 |
+
st.header("Analysis Results")
|
96 |
+
|
97 |
+
# Get data from session state
|
98 |
+
full_transcription = st.session_state.get('full_transcription', 'No speech detected.')
|
99 |
+
ser_timeline = st.session_state.get('ser_timeline', {})
|
100 |
+
ter_timeline = st.session_state.get('ter_timeline', {})
|
101 |
+
fer_timeline = st.session_state.get('fer_timeline', {})
|
102 |
+
duration = st.session_state.get('duration', 0)
|
103 |
+
|
104 |
+
# Process timelines
|
105 |
+
fer_df = process_timeline_to_df(fer_timeline, FACIAL_TO_UNIFIED)
|
106 |
+
ser_df = process_timeline_to_df(ser_timeline, SER_TO_UNIFIED)
|
107 |
+
ter_df = process_timeline_to_df(ter_timeline, TEXT_TO_UNIFIED)
|
108 |
+
|
109 |
+
# Get dominant emotions
|
110 |
+
dominant_fer = get_dominant_emotion_from_df(fer_df)
|
111 |
+
dominant_ser = get_dominant_emotion_from_df(ser_df)
|
112 |
+
dominant_text = get_dominant_emotion_from_df(ter_df)
|
113 |
+
|
114 |
+
# Get average scores
|
115 |
+
fer_avg_scores = get_avg_unified_scores(fer_df)
|
116 |
+
ser_avg_scores = get_avg_unified_scores(ser_df)
|
117 |
+
ter_avg_scores = get_avg_unified_scores(ter_df)
|
118 |
+
|
119 |
+
# Calculate vectors and similarity
|
120 |
+
fer_vector = create_unified_vector(fer_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
|
121 |
+
ser_vector = create_unified_vector(ser_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
|
122 |
+
text_vector = create_unified_vector(ter_avg_scores, {e:e for e in UNIFIED_EMOTIONS})
|
123 |
+
|
124 |
+
similarities = [cosine_similarity([fer_vector], [text_vector])[0][0], cosine_similarity([fer_vector], [ser_vector])[0][0], cosine_similarity([ser_vector], [text_vector])[0][0]]
|
125 |
+
avg_similarity = np.nanmean([s for s in similarities if not np.isnan(s)])
|
126 |
+
|
127 |
+
# Display transcription
|
128 |
+
st.subheader("Transcription")
|
129 |
+
st.markdown(f"> *{full_transcription}*")
|
130 |
+
st.divider()
|
131 |
+
|
132 |
+
# Display summary and timeline
|
133 |
+
col1, col2 = st.columns([1, 2])
|
134 |
+
with col1:
|
135 |
+
st.subheader("Multimodal Summary")
|
136 |
+
st.metric("Dominant Facial Emotion", dominant_fer)
|
137 |
+
st.metric("Dominant Text Emotion", dominant_text)
|
138 |
+
st.metric("Dominant Speech Emotion", dominant_ser)
|
139 |
+
st.metric("Emotion Consistency", get_consistency_level(avg_similarity), f"{avg_similarity:.2f} Avg. Cosine Similarity")
|
140 |
+
|
141 |
+
with col2:
|
142 |
+
st.subheader("Unified Emotion Timeline")
|
143 |
+
|
144 |
+
if duration > 0:
|
145 |
+
full_index = np.arange(0, duration, 0.5)
|
146 |
+
combined_df = pd.DataFrame(index=full_index)
|
147 |
|
148 |
+
# ECI Timeline Calculation
|
149 |
+
eci_timeline = {}
|
150 |
+
for t_stamp in full_index:
|
151 |
+
vectors = []
|
152 |
+
|
153 |
+
# Interpolate to get a value for any timestamp
|
154 |
+
fer_scores = fer_df.reindex(fer_df.index.union([t_stamp])).interpolate(method='linear').loc[t_stamp]
|
155 |
+
if not fer_scores.isnull().all():
|
156 |
+
vectors.append(create_unified_vector(fer_scores.to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
if int(t_stamp) in ser_df.index:
|
159 |
+
vectors.append(create_unified_vector(ser_df.loc[int(t_stamp)].to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
|
160 |
+
|
161 |
+
if int(t_stamp) in ter_df.index:
|
162 |
+
vectors.append(create_unified_vector(ter_df.loc[int(t_stamp)].to_dict(), {e:e for e in UNIFIED_EMOTIONS}))
|
163 |
+
|
164 |
+
if len(vectors) >= 2:
|
165 |
+
sims = [cosine_similarity([v1], [v2])[0][0] for i, v1 in enumerate(vectors) for v2 in vectors[i+1:]]
|
166 |
+
eci_timeline[t_stamp] = np.mean(sims)
|
|
|
167 |
|
168 |
+
if not fer_df.empty:
|
169 |
+
fer_df_resampled = fer_df.reindex(fer_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
|
170 |
+
for e in UNIFIED_EMOTIONS: combined_df[f'Facial_{e}'] = fer_df_resampled.get(e, 0.0)
|
171 |
+
|
172 |
+
if not ser_df.empty:
|
173 |
+
ser_df_resampled = ser_df.reindex(ser_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
|
174 |
+
for e in UNIFIED_EMOTIONS: combined_df[f'Speech_{e}'] = ser_df_resampled.get(e, 0.0)
|
|
|
|
|
|
|
175 |
|
176 |
+
if not ter_df.empty:
|
177 |
+
ter_df_resampled = ter_df.reindex(ter_df.index.union(full_index)).interpolate(method='linear').reindex(full_index)
|
178 |
+
for e in UNIFIED_EMOTIONS: combined_df[f'Text_{e}'] = ter_df_resampled.get(e, 0.0)
|
|
|
|
|
179 |
|
180 |
+
if eci_timeline:
|
181 |
+
eci_series = pd.Series(eci_timeline).reindex(full_index).interpolate(method='linear')
|
182 |
+
combined_df['ECI'] = eci_series
|
183 |
+
|
184 |
+
combined_df.fillna(0, inplace=True)
|
185 |
|
186 |
+
if not combined_df.empty:
|
187 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
188 |
+
colors = {'happy': 'green', 'sad': 'blue', 'angry': 'red', 'neutral': 'gray'}
|
189 |
+
styles = {'Facial': '-', 'Speech': '--', 'Text': ':'}
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
for col in combined_df.columns:
|
192 |
+
if col == 'ECI': continue
|
193 |
+
modality, emotion = col.split('_')
|
194 |
+
if emotion in colors:
|
195 |
+
ax.plot(combined_df.index, combined_df[col], label=f'{modality} {emotion.capitalize()}', color=colors[emotion], linestyle=styles[modality], alpha=0.7)
|
196 |
+
|
197 |
+
if 'ECI' in combined_df.columns:
|
198 |
+
ax.plot(combined_df.index, combined_df['ECI'], label='Emotion Consistency', color='black', linewidth=2.5, alpha=0.9)
|
199 |
|
200 |
+
ax.set_title("Emotion Confidence Over Time (Normalized)")
|
201 |
+
ax.set_xlabel("Time (seconds)")
|
202 |
+
ax.set_ylabel("Confidence Score (0-1)")
|
203 |
+
ax.set_ylim(0, 1)
|
204 |
+
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
|
205 |
+
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
|
206 |
+
plt.tight_layout()
|
207 |
+
st.pyplot(fig)
|
208 |
+
else:
|
209 |
+
st.write("No emotion data available to plot.")
|
210 |
+
else:
|
211 |
+
st.write("No timeline data available.")
|
212 |
|
213 |
+
# --- Two-Stage UI and Processing Logic ---
|
214 |
+
uploaded_file = st.file_uploader("Choose a video file...", type=["mp4", "mov", "avi", "mkv"])
|
|
|
215 |
|
216 |
+
# Initialize session state variables
|
217 |
+
if 'temp_video_path' not in st.session_state:
|
218 |
+
st.session_state.temp_video_path = None
|
219 |
+
if 'uploaded_file_id' not in st.session_state:
|
220 |
+
st.session_state.uploaded_file_id = None
|
221 |
|
222 |
+
# Clear previous results when a new file is uploaded
|
223 |
+
if uploaded_file is not None:
|
224 |
+
file_id = uploaded_file.file_id if hasattr(uploaded_file, 'file_id') else str(hash(uploaded_file.name + str(uploaded_file.size)))
|
225 |
+
|
226 |
+
if st.session_state.uploaded_file_id != file_id:
|
227 |
+
# New file uploaded, clear previous results
|
228 |
+
st.session_state.uploaded_file_id = file_id
|
229 |
+
for key in ['stage1_complete', 'stage2_complete', 'full_transcription', 'ser_timeline', 'ter_timeline', 'fer_timeline', 'duration']:
|
230 |
+
if key in st.session_state:
|
231 |
+
del st.session_state[key]
|
232 |
+
|
233 |
+
# Save the video file
|
234 |
+
if st.session_state.temp_video_path and os.path.exists(st.session_state.temp_video_path):
|
235 |
+
try:
|
236 |
+
os.unlink(st.session_state.temp_video_path)
|
237 |
+
except Exception:
|
238 |
+
pass
|
239 |
+
|
240 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tfile:
|
241 |
+
tfile.write(uploaded_file.read())
|
242 |
+
st.session_state.temp_video_path = tfile.name
|
243 |
|
244 |
+
if uploaded_file is not None and st.session_state.temp_video_path:
|
245 |
+
st.video(st.session_state.temp_video_path)
|
246 |
+
|
247 |
+
# Stage 1: Audio & Text Analysis
|
248 |
+
if not st.session_state.get('stage1_complete', False):
|
249 |
+
if st.button("π΅ Step 1: Analyze Audio & Text", type="primary"):
|
250 |
+
try:
|
251 |
+
# Load audio models
|
252 |
+
whisper_model, text_classifier, ser_model, ser_feature_extractor = load_audio_models()
|
|
|
|
|
253 |
|
254 |
+
ser_timeline, ter_timeline = {}, {}
|
255 |
+
full_transcription = "No speech detected."
|
256 |
|
257 |
+
video_clip = VideoFileClip(st.session_state.temp_video_path)
|
258 |
+
duration = video_clip.duration
|
259 |
+
st.session_state.duration = duration
|
260 |
+
|
261 |
+
with st.spinner("Analyzing audio and text..."):
|
262 |
+
if video_clip.audio:
|
263 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as taudio:
|
264 |
+
video_clip.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
|
265 |
+
temp_audio_path = taudio.name
|
266 |
|
267 |
+
# Transcription
|
268 |
+
whisper_result = whisper_model.transcribe(
|
269 |
+
temp_audio_path,
|
270 |
+
word_timestamps=True,
|
271 |
+
fp16=False,
|
272 |
+
condition_on_previous_text=False
|
273 |
+
)
|
274 |
+
full_transcription = whisper_result['text'].strip()
|
275 |
+
|
276 |
+
# Speech emotion recognition
|
277 |
+
audio_array, _ = sf.read(temp_audio_path, dtype='float32')
|
278 |
+
if audio_array.ndim == 2:
|
279 |
+
audio_array = audio_array.mean(axis=1)
|
280 |
|
281 |
+
for i in range(int(duration)):
|
282 |
+
start_sample, end_sample = i * AUDIO_SAMPLE_RATE, (i + 1) * AUDIO_SAMPLE_RATE
|
283 |
+
chunk = audio_array[start_sample:end_sample]
|
284 |
+
|
285 |
+
if len(chunk) > 400:
|
286 |
+
inputs = ser_feature_extractor(chunk, sampling_rate=AUDIO_SAMPLE_RATE, return_tensors="pt", padding=True)
|
287 |
+
with torch.no_grad():
|
288 |
+
logits = ser_model(**inputs).logits
|
289 |
+
scores = torch.nn.functional.softmax(logits, dim=1).squeeze()
|
290 |
+
ser_timeline[i] = {ser_model.config.id2label[k]: score.item() for k, score in enumerate(scores)}
|
291 |
|
292 |
+
# Text emotion recognition
|
293 |
+
words_in_segment = [seg['word'] for seg in whisper_result.get('segments', []) if seg['start'] >= i and seg['start'] < i+1 for seg in seg.get('words', [])]
|
294 |
+
segment_text = " ".join(words_in_segment).strip()
|
295 |
+
if segment_text:
|
296 |
+
text_emotions = text_classifier(segment_text)[0]
|
297 |
+
ter_timeline[i] = {emo['label']: emo['score'] for emo in text_emotions}
|
298 |
+
|
299 |
+
# Clean up audio file
|
300 |
+
if os.path.exists(temp_audio_path):
|
301 |
+
os.unlink(temp_audio_path)
|
302 |
|
303 |
+
video_clip.close()
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
# Store results in session state
|
306 |
+
st.session_state.full_transcription = full_transcription
|
307 |
+
st.session_state.ser_timeline = ser_timeline
|
308 |
+
st.session_state.ter_timeline = ter_timeline
|
309 |
+
st.session_state.stage1_complete = True
|
310 |
+
|
311 |
+
st.success("β
Audio analysis complete! Speech and text emotions have been analyzed.")
|
312 |
+
st.rerun()
|
313 |
+
|
314 |
+
except Exception as e:
|
315 |
+
st.error(f"Error during audio analysis: {str(e)}")
|
316 |
+
|
317 |
+
else:
|
318 |
+
st.success("β
Stage 1 (Audio & Text Analysis) - Complete!")
|
319 |
+
|
320 |
+
# Stage 2: Facial Analysis
|
321 |
+
if st.session_state.get('stage1_complete', False) and not st.session_state.get('stage2_complete', False):
|
322 |
+
if st.button("π Step 2: Analyze Facial Expressions", type="primary"):
|
323 |
+
try:
|
324 |
+
fer_timeline = {}
|
325 |
+
|
326 |
+
with st.spinner("Analyzing facial expressions..."):
|
327 |
+
cap = cv2.VideoCapture(st.session_state.temp_video_path)
|
328 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
329 |
+
frame_count = 0
|
330 |
|
331 |
+
while cap.isOpened():
|
332 |
+
ret, frame = cap.read()
|
333 |
+
if not ret:
|
334 |
+
break
|
335 |
+
timestamp = frame_count / fps
|
336 |
+
if frame_count % int(fps) == 0:
|
337 |
+
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
|
338 |
+
if isinstance(analysis, list) and len(analysis) > 0:
|
339 |
+
fer_timeline[timestamp] = {k: v / 100.0 for k, v in analysis[0]['emotion'].items()}
|
340 |
+
frame_count += 1
|
341 |
+
cap.release()
|
342 |
+
|
343 |
+
# Store results in session state
|
344 |
+
st.session_state.fer_timeline = fer_timeline
|
345 |
+
st.session_state.stage2_complete = True
|
346 |
+
|
347 |
+
st.success("β
Facial analysis complete! All analyses are now finished.")
|
348 |
+
st.rerun()
|
349 |
+
|
350 |
+
except Exception as e:
|
351 |
+
st.error(f"Error during facial analysis: {str(e)}")
|
352 |
+
|
353 |
+
elif st.session_state.get('stage2_complete', False):
|
354 |
+
st.success("β
Stage 2 (Facial Expression Analysis) - Complete!")
|
355 |
+
|
356 |
+
# Display results if both stages are complete
|
357 |
+
if st.session_state.get('stage1_complete', False) and st.session_state.get('stage2_complete', False):
|
358 |
+
display_results()
|
359 |
|
360 |
+
# Cleanup on app restart or when session ends
|
361 |
+
if st.session_state.temp_video_path and not uploaded_file:
|
362 |
+
try:
|
363 |
+
if os.path.exists(st.session_state.temp_video_path):
|
364 |
+
os.unlink(st.session_state.temp_video_path)
|
365 |
+
st.session_state.temp_video_path = None
|
366 |
+
except Exception:
|
367 |
+
pass
|
|