Kingston Yip commited on
Commit
60d7ec1
·
1 Parent(s): 3a09ea8
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -1,26 +1,29 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from pysentimiento import create_analyzer
 
4
 
5
- hate_speech_analyzer = create_analyzer(task="hate_speech", lang="es")
6
 
7
- pipe = pipeline(task="sentiment-analysis")
8
  st.title("Toxic Tweets Analyzer")
9
  image = "kanye_tweet.jpg"
10
  st.image(image, use_column_width=True)
11
 
12
- # create a dropdown to select the model
13
- model = st.selectbox("Select model", ["sentiment-analysis transformer", "finiteautomata/bertweet-base-sentiment-analysis"])
 
 
 
 
14
 
15
  #form
16
  with st.form("my_form"):
17
  submitted = st.form_submit_button("Analyze")
18
  tweet = st.text_area("enter tweet here:", value="i'm nice at ping pong")
19
  if submitted:
20
- out = None
21
- if model == "sentiment-analysis transformer":
22
- out = pipe(tweet)
23
- else:
24
- out = hate_speech_analyzer.predict(tweet)
25
 
 
 
 
 
26
  st.json(out)
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from pysentimiento import create_analyzer
4
+ from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
5
 
 
6
 
 
7
  st.title("Toxic Tweets Analyzer")
8
  image = "kanye_tweet.jpg"
9
  st.image(image, use_column_width=True)
10
 
11
+
12
+ #select model
13
+ model_name = st.selectbox("Select model", ["distilbert-base-uncased-finetuned-sst-2-english", "finiteautomata/bertweet-base-sentiment-analysis"])
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
16
+ clf = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
17
 
18
  #form
19
  with st.form("my_form"):
20
  submitted = st.form_submit_button("Analyze")
21
  tweet = st.text_area("enter tweet here:", value="i'm nice at ping pong")
22
  if submitted:
23
+ out = clf(tweet)
 
 
 
 
24
 
25
+ #loading bar
26
+ st.spinner(text="...")
27
+ st.success('Done!')
28
+ st.balloons()
29
  st.json(out)