import streamlit as st import torch from transformers import AutoTokenizer, TFAutoModelForSequenceClassification, pipeline st.title("Toxic Tweets Analyzer") image = "kanye_tweet.jpg" st.image(image, use_column_width=True) #select model model_name = st.selectbox("Select model", ["distilbert-base-uncased-finetuned-sst-2-english", "finiteautomata/bertweet-base-sentiment-analysis"]) tokenizer = AutoTokenizer.from_pretrained(model_name) model = TFAutoModelForSequenceClassification.from_pretrained(model_name) clf = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, framework="pt") #form with st.form("my_form"): submitted = st.form_submit_button("Analyze") tweet = st.text_area("enter tweet here:", value="i'm nice at ping pong") if submitted: out = clf(tweet) #loading bar st.spinner(text="...") st.success('Done!') st.balloons() st.json(out)