Spaces:
Sleeping
Sleeping
Update Space (evaluate main: 828c6327)
Browse files- README.md +130 -4
- app.py +6 -0
- precision.py +145 -0
- requirements.txt +4 -0
README.md
CHANGED
@@ -1,12 +1,138 @@
|
|
1 |
---
|
2 |
title: Precision
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Precision
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
---
|
14 |
|
15 |
+
# Metric Card for Precision
|
16 |
+
|
17 |
+
|
18 |
+
## Metric Description
|
19 |
+
|
20 |
+
Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation:
|
21 |
+
Precision = TP / (TP + FP)
|
22 |
+
where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive).
|
23 |
+
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
At minimum, precision takes as input a list of predicted labels, `predictions`, and a list of output labels, `references`.
|
28 |
+
|
29 |
+
```python
|
30 |
+
>>> precision_metric = evaluate.load("precision")
|
31 |
+
>>> results = precision_metric.compute(references=[0, 1], predictions=[0, 1])
|
32 |
+
>>> print(results)
|
33 |
+
{'precision': 1.0}
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
### Inputs
|
38 |
+
- **predictions** (`list` of `int`): Predicted class labels.
|
39 |
+
- **references** (`list` of `int`): Actual class labels.
|
40 |
+
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
|
41 |
+
- **pos_label** (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
|
42 |
+
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
|
43 |
+
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
|
44 |
+
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
|
45 |
+
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
|
46 |
+
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
|
47 |
+
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
|
48 |
+
- **sample_weight** (`list` of `float`): Sample weights Defaults to None.
|
49 |
+
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
|
50 |
+
- 0: Returns 0 when there is a zero division.
|
51 |
+
- 1: Returns 1 when there is a zero division.
|
52 |
+
- 'warn': Raises warnings and then returns 0 when there is a zero division.
|
53 |
+
|
54 |
+
|
55 |
+
### Output Values
|
56 |
+
- **precision**(`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better.
|
57 |
+
|
58 |
+
Output Example(s):
|
59 |
+
```python
|
60 |
+
{'precision': 0.2222222222222222}
|
61 |
+
```
|
62 |
+
```python
|
63 |
+
{'precision': array([0.66666667, 0.0, 0.0])}
|
64 |
+
```
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
#### Values from Popular Papers
|
70 |
+
|
71 |
+
|
72 |
+
### Examples
|
73 |
+
|
74 |
+
Example 1-A simple binary example
|
75 |
+
```python
|
76 |
+
>>> precision_metric = evaluate.load("precision")
|
77 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
|
78 |
+
>>> print(results)
|
79 |
+
{'precision': 0.5}
|
80 |
+
```
|
81 |
+
|
82 |
+
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
|
83 |
+
```python
|
84 |
+
>>> precision_metric = evaluate.load("precision")
|
85 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
|
86 |
+
>>> print(round(results['precision'], 2))
|
87 |
+
0.67
|
88 |
+
```
|
89 |
+
|
90 |
+
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
|
91 |
+
```python
|
92 |
+
>>> precision_metric = evaluate.load("precision")
|
93 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
|
94 |
+
>>> print(results)
|
95 |
+
{'precision': 0.23529411764705882}
|
96 |
+
```
|
97 |
+
|
98 |
+
Example 4-A multiclass example, with different values for the `average` input.
|
99 |
+
```python
|
100 |
+
>>> predictions = [0, 2, 1, 0, 0, 1]
|
101 |
+
>>> references = [0, 1, 2, 0, 1, 2]
|
102 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='macro')
|
103 |
+
>>> print(results)
|
104 |
+
{'precision': 0.2222222222222222}
|
105 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='micro')
|
106 |
+
>>> print(results)
|
107 |
+
{'precision': 0.3333333333333333}
|
108 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted')
|
109 |
+
>>> print(results)
|
110 |
+
{'precision': 0.2222222222222222}
|
111 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average=None)
|
112 |
+
>>> print([round(res, 2) for res in results['precision']])
|
113 |
+
[0.67, 0.0, 0.0]
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
## Limitations and Bias
|
118 |
+
|
119 |
+
[Precision](https://huggingface.co/metrics/precision) and [recall](https://huggingface.co/metrics/recall) are complementary and can be used to measure different aspects of model performance -- using both of them (or an averaged measure like [F1 score](https://huggingface.co/metrics/F1) to better represent different aspects of performance. See [Wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall) for more information.
|
120 |
+
|
121 |
+
## Citation(s)
|
122 |
+
```bibtex
|
123 |
+
@article{scikit-learn,
|
124 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
125 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
126 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
127 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
128 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
129 |
+
journal={Journal of Machine Learning Research},
|
130 |
+
volume={12},
|
131 |
+
pages={2825--2830},
|
132 |
+
year={2011}
|
133 |
+
}
|
134 |
+
```
|
135 |
+
|
136 |
+
|
137 |
+
## Further References
|
138 |
+
- [Wikipedia -- Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("precision")
|
6 |
+
launch_gradio_widget(module)
|
precision.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Precision metric."""
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
from sklearn.metrics import precision_score
|
18 |
+
|
19 |
+
import evaluate
|
20 |
+
|
21 |
+
|
22 |
+
_DESCRIPTION = """
|
23 |
+
Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation:
|
24 |
+
Precision = TP / (TP + FP)
|
25 |
+
where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive).
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
_KWARGS_DESCRIPTION = """
|
30 |
+
Args:
|
31 |
+
predictions (`list` of `int`): Predicted class labels.
|
32 |
+
references (`list` of `int`): Actual class labels.
|
33 |
+
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
|
34 |
+
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
|
35 |
+
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
|
36 |
+
|
37 |
+
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
|
38 |
+
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
|
39 |
+
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
|
40 |
+
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
|
41 |
+
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
|
42 |
+
sample_weight (`list` of `float`): Sample weights Defaults to None.
|
43 |
+
zero_division (`int` or `string`): Sets the value to return when there is a zero division. Defaults to 'warn'.
|
44 |
+
|
45 |
+
- 0: Returns 0 when there is a zero division.
|
46 |
+
- 1: Returns 1 when there is a zero division.
|
47 |
+
- 'warn': Raises warnings and then returns 0 when there is a zero division.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
precision (`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better.
|
51 |
+
|
52 |
+
Examples:
|
53 |
+
|
54 |
+
Example 1-A simple binary example
|
55 |
+
>>> precision_metric = evaluate.load("precision")
|
56 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
|
57 |
+
>>> print(results)
|
58 |
+
{'precision': 0.5}
|
59 |
+
|
60 |
+
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
|
61 |
+
>>> precision_metric = evaluate.load("precision")
|
62 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
|
63 |
+
>>> print(round(results['precision'], 2))
|
64 |
+
0.67
|
65 |
+
|
66 |
+
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
|
67 |
+
>>> precision_metric = evaluate.load("precision")
|
68 |
+
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
|
69 |
+
>>> print(results)
|
70 |
+
{'precision': 0.23529411764705882}
|
71 |
+
|
72 |
+
Example 4-A multiclass example, with different values for the `average` input.
|
73 |
+
>>> predictions = [0, 2, 1, 0, 0, 1]
|
74 |
+
>>> references = [0, 1, 2, 0, 1, 2]
|
75 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='macro')
|
76 |
+
>>> print(results)
|
77 |
+
{'precision': 0.2222222222222222}
|
78 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='micro')
|
79 |
+
>>> print(results)
|
80 |
+
{'precision': 0.3333333333333333}
|
81 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted')
|
82 |
+
>>> print(results)
|
83 |
+
{'precision': 0.2222222222222222}
|
84 |
+
>>> results = precision_metric.compute(predictions=predictions, references=references, average=None)
|
85 |
+
>>> print([round(res, 2) for res in results['precision']])
|
86 |
+
[0.67, 0.0, 0.0]
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
_CITATION = """
|
91 |
+
@article{scikit-learn,
|
92 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
93 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
94 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
95 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
96 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
97 |
+
journal={Journal of Machine Learning Research},
|
98 |
+
volume={12},
|
99 |
+
pages={2825--2830},
|
100 |
+
year={2011}
|
101 |
+
}
|
102 |
+
"""
|
103 |
+
|
104 |
+
|
105 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
106 |
+
class Precision(evaluate.EvaluationModule):
|
107 |
+
def _info(self):
|
108 |
+
return evaluate.EvaluationModuleInfo(
|
109 |
+
description=_DESCRIPTION,
|
110 |
+
citation=_CITATION,
|
111 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
112 |
+
features=datasets.Features(
|
113 |
+
{
|
114 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
115 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
116 |
+
}
|
117 |
+
if self.config_name == "multilabel"
|
118 |
+
else {
|
119 |
+
"predictions": datasets.Value("int32"),
|
120 |
+
"references": datasets.Value("int32"),
|
121 |
+
}
|
122 |
+
),
|
123 |
+
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html"],
|
124 |
+
)
|
125 |
+
|
126 |
+
def _compute(
|
127 |
+
self,
|
128 |
+
predictions,
|
129 |
+
references,
|
130 |
+
labels=None,
|
131 |
+
pos_label=1,
|
132 |
+
average="binary",
|
133 |
+
sample_weight=None,
|
134 |
+
zero_division="warn",
|
135 |
+
):
|
136 |
+
score = precision_score(
|
137 |
+
references,
|
138 |
+
predictions,
|
139 |
+
labels=labels,
|
140 |
+
pos_label=pos_label,
|
141 |
+
average=average,
|
142 |
+
sample_weight=sample_weight,
|
143 |
+
zero_division=zero_division,
|
144 |
+
)
|
145 |
+
return {"precision": float(score) if score.size == 1 else score}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: fix github to release
|
2 |
+
git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
|
3 |
+
datasets~=2.0
|
4 |
+
sklearn
|