Spaces:
Runtime error
Runtime error
File size: 10,133 Bytes
ddff15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import hydra
import torch
import argparse
import time
from pathlib import Path
import math
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
import cv2
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from collections import deque
import numpy as np
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
cars_deque = {}
deepsort = None
object_counter = {}
speed_line_queue = {}
def estimatespeed(Location1, Location2):
#Euclidean Distance Formula
d_pixel = math.sqrt(math.pow(Location2[0] - Location1[0], 2) + math.pow(Location2[1] - Location1[1], 2))
# defining thr pixels per meter
ppm = 8
d_meters = d_pixel/ppm
time_constant = 15*3.6
#distance = speed/time
speed = d_meters * time_constant
return int(speed)
def init_tracker():
global deepsort
cfg_deep = get_config()
cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")
deepsort= DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
use_cuda=True)
##########################################################################################
def xyxy_to_xywh(*xyxy):
"""" Calculates the relative bounding box from absolute pixel values. """
bbox_left = min([xyxy[0].item(), xyxy[2].item()])
bbox_top = min([xyxy[1].item(), xyxy[3].item()])
bbox_w = abs(xyxy[0].item() - xyxy[2].item())
bbox_h = abs(xyxy[1].item() - xyxy[3].item())
x_c = (bbox_left + bbox_w / 2)
y_c = (bbox_top + bbox_h / 2)
w = bbox_w
h = bbox_h
return x_c, y_c, w, h
def compute_color_for_labels(label):
"""
Simple function that adds fixed color depending on the class
"""
if label == 0: #person
color = (85,45,255)
elif label == 2: # Car
color = (222,82,175)
elif label == 3: # Motobike
color = (0, 204, 255)
elif label == 5: # Bus
color = (0, 149, 255)
else:
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]
return tuple(color)
def draw_border(img, pt1, pt2, color, thickness, r, d):
x1,y1 = pt1
x2,y2 = pt2
# Top left
cv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)
cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)
cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)
# Top right
cv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)
cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)
cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)
# Bottom left
cv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)
cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)
cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)
# Bottom right
cv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)
cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)
cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)
cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA)
cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA)
cv2.circle(img, (x1 +r, y1+r), 2, color, 12)
cv2.circle(img, (x2 -r, y1+r), 2, color, 12)
cv2.circle(img, (x1 +r, y2-r), 2, color, 12)
cv2.circle(img, (x2 -r, y2-r), 2, color, 12)
return img
def UI_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
img = draw_border(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color, 1, 8, 2)
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def ccw(A,B,C):
return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])
def draw_boxes(img, bbox, names,object_id, identities=None, offset=(0, 0)):
#cv2.line(img, line[0], line[1], (46,162,112), 3)
cv2.putText(img, f'Number of cars: {len(cars_deque)}', (11, 35), 0, 1, [0, 255, 0], thickness=2, lineType=cv2.LINE_AA)
height, width, _ = img.shape
# remove tracked point from buffer if object is lost
for key in list(cars_deque):
if key not in identities:
cars_deque.pop(key)
for i, box in enumerate(bbox):
obj_name = names[object_id[i]]
if obj_name == 'car':
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# code to find center of bottom edge
center = (int((x2+x1)/ 2), int((y2+y2)/2))
# get ID of object
id = int(identities[i]) if identities is not None else 0
# create new buffer for new object
if id not in cars_deque:
cars_deque[id] = deque(maxlen= 64)
speed_line_queue[id] = []
color = compute_color_for_labels(object_id[i])
label = '{}{:d}'.format("", id) + ":"+ '%s' % (obj_name)
# add center to buffer
cars_deque[id].appendleft(center)
if len(cars_deque[id]) >= 2:
object_speed = estimatespeed(cars_deque[id][1], cars_deque[id][0])
speed_line_queue[id].append(object_speed)
if obj_name not in object_counter:
object_counter[obj_name] = 1
try:
label = label + " " + str(sum(speed_line_queue[id])//len(speed_line_queue[id])) + "km/h"
except:
pass
UI_box(box, img, label=label, color=color, line_thickness=2)
return img
class DetectionPredictor(BasePredictor):
def get_annotator(self, img):
return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))
def preprocess(self, img):
img = torch.from_numpy(img).to(self.model.device)
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
img /= 255 # 0 - 255 to 0.0 - 1.0
return img
def postprocess(self, preds, img, orig_img):
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det)
for i, pred in enumerate(preds):
shape = orig_img[i].shape if self.webcam else orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
return preds
def write_results(self, idx, preds, batch):
p, im, im0 = batch
all_outputs = []
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
im0 = im0.copy()
if self.webcam: # batch_size >= 1
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
save_path = str(self.save_dir / p.name) # im.jpg
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.annotator = self.get_annotator(im0)
det = preds[idx]
all_outputs.append(det)
if len(det) == 0:
return log_string
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "
# write
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
xywh_bboxs = []
confs = []
oids = []
outputs = []
for *xyxy, conf, cls in reversed(det):
x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)
xywh_obj = [x_c, y_c, bbox_w, bbox_h]
xywh_bboxs.append(xywh_obj)
confs.append([conf.item()])
oids.append(int(cls))
xywhs = torch.Tensor(xywh_bboxs)
confss = torch.Tensor(confs)
outputs = deepsort.update(xywhs, confss, oids, im0)
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -2]
object_id = outputs[:, -1]
draw_boxes(im0, bbox_xyxy, self.model.names, object_id,identities)
return log_string
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):
init_tracker()
cfg.model = cfg.model or "yolov8n.pt"
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"
predictor = DetectionPredictor(cfg)
predictor()
if __name__ == "__main__":
predict()
|