Spaces:
Runtime error
Runtime error
# Ultralytics YOLO ๐, GPL-3.0 license | |
import os | |
from pathlib import Path | |
import hydra | |
import numpy as np | |
import torch | |
from ultralytics.yolo.data import build_dataloader | |
from ultralytics.yolo.data.dataloaders.v5loader import create_dataloader | |
from ultralytics.yolo.engine.validator import BaseValidator | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, colorstr, ops, yaml_load | |
from ultralytics.yolo.utils.checks import check_file, check_requirements | |
from ultralytics.yolo.utils.metrics import ConfusionMatrix, DetMetrics, box_iou | |
from ultralytics.yolo.utils.plotting import output_to_target, plot_images | |
from ultralytics.yolo.utils.torch_utils import de_parallel | |
class DetectionValidator(BaseValidator): | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None): | |
super().__init__(dataloader, save_dir, pbar, logger, args) | |
self.data_dict = yaml_load(check_file(self.args.data), append_filename=True) if self.args.data else None | |
self.is_coco = False | |
self.class_map = None | |
self.metrics = DetMetrics(save_dir=self.save_dir, plot=self.args.plots) | |
self.iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95 | |
self.niou = self.iouv.numel() | |
def preprocess(self, batch): | |
batch["img"] = batch["img"].to(self.device, non_blocking=True) | |
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255 | |
for k in ["batch_idx", "cls", "bboxes"]: | |
batch[k] = batch[k].to(self.device) | |
nb, _, height, width = batch["img"].shape | |
batch["bboxes"] *= torch.tensor((width, height, width, height), device=self.device) # to pixels | |
self.lb = [torch.cat([batch["cls"], batch["bboxes"]], dim=-1)[batch["batch_idx"] == i] | |
for i in range(nb)] if self.args.save_hybrid else [] # for autolabelling | |
return batch | |
def init_metrics(self, model): | |
head = model.model[-1] if self.training else model.model.model[-1] | |
val = self.data.get('val', '') # validation path | |
self.is_coco = isinstance(val, str) and val.endswith(f'coco{os.sep}val2017.txt') # is COCO dataset | |
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000)) | |
self.args.save_json |= self.is_coco and not self.training # run on final val if training COCO | |
self.nc = head.nc | |
self.names = model.names | |
self.metrics.names = self.names | |
self.confusion_matrix = ConfusionMatrix(nc=self.nc) | |
self.seen = 0 | |
self.jdict = [] | |
self.stats = [] | |
def get_desc(self): | |
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)") | |
def postprocess(self, preds): | |
preds = ops.non_max_suppression(preds, | |
self.args.conf, | |
self.args.iou, | |
labels=self.lb, | |
multi_label=True, | |
agnostic=self.args.single_cls, | |
max_det=self.args.max_det) | |
return preds | |
def update_metrics(self, preds, batch): | |
# Metrics | |
for si, pred in enumerate(preds): | |
idx = batch["batch_idx"] == si | |
cls = batch["cls"][idx] | |
bbox = batch["bboxes"][idx] | |
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
shape = batch["ori_shape"][si] | |
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
self.seen += 1 | |
if npr == 0: | |
if nl: | |
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
continue | |
# Predictions | |
if self.args.single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape, | |
ratio_pad=batch["ratio_pad"][si]) # native-space pred | |
# Evaluate | |
if nl: | |
tbox = ops.xywh2xyxy(bbox) # target boxes | |
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape, | |
ratio_pad=batch["ratio_pad"][si]) # native-space labels | |
labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
correct_bboxes = self._process_batch(predn, labelsn) | |
# TODO: maybe remove these `self.` arguments as they already are member variable | |
if self.args.plots: | |
self.confusion_matrix.process_batch(predn, labelsn) | |
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) | |
# Save | |
if self.args.save_json: | |
self.pred_to_json(predn, batch["im_file"][si]) | |
# if self.args.save_txt: | |
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
def get_stats(self): | |
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy | |
if len(stats) and stats[0].any(): | |
self.metrics.process(*stats) | |
self.nt_per_class = np.bincount(stats[-1].astype(int), minlength=self.nc) # number of targets per class | |
return self.metrics.results_dict | |
def print_results(self): | |
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format | |
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results())) | |
if self.nt_per_class.sum() == 0: | |
self.logger.warning( | |
f'WARNING โ ๏ธ no labels found in {self.args.task} set, can not compute metrics without labels') | |
# Print results per class | |
if (self.args.verbose or not self.training) and self.nc > 1 and len(self.stats): | |
for i, c in enumerate(self.metrics.ap_class_index): | |
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i))) | |
if self.args.plots: | |
self.confusion_matrix.plot(save_dir=self.save_dir, names=list(self.names.values())) | |
def _process_batch(self, detections, labels): | |
""" | |
Return correct prediction matrix | |
Arguments: | |
detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
labels (array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
correct (array[N, 10]), for 10 IoU levels | |
""" | |
iou = box_iou(labels[:, 1:], detections[:, :4]) | |
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) | |
correct_class = labels[:, 0:1] == detections[:, 5] | |
for i in range(len(self.iouv)): | |
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match | |
if x[0].shape[0]: | |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), | |
1).cpu().numpy() # [label, detect, iou] | |
if x[0].shape[0] > 1: | |
matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
# matches = matches[matches[:, 2].argsort()[::-1]] | |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
correct[matches[:, 1].astype(int), i] = True | |
return torch.tensor(correct, dtype=torch.bool, device=detections.device) | |
def get_dataloader(self, dataset_path, batch_size): | |
# TODO: manage splits differently | |
# calculate stride - check if model is initialized | |
gs = max(int(de_parallel(self.model).stride if self.model else 0), 32) | |
return create_dataloader(path=dataset_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch_size, | |
stride=gs, | |
hyp=dict(self.args), | |
cache=False, | |
pad=0.5, | |
rect=True, | |
workers=self.args.workers, | |
prefix=colorstr(f'{self.args.mode}: '), | |
shuffle=False, | |
seed=self.args.seed)[0] if self.args.v5loader else \ | |
build_dataloader(self.args, batch_size, img_path=dataset_path, stride=gs, mode="val")[0] | |
def plot_val_samples(self, batch, ni): | |
plot_images(batch["img"], | |
batch["batch_idx"], | |
batch["cls"].squeeze(-1), | |
batch["bboxes"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"val_batch{ni}_labels.jpg", | |
names=self.names) | |
def plot_predictions(self, batch, preds, ni): | |
plot_images(batch["img"], | |
*output_to_target(preds, max_det=15), | |
paths=batch["im_file"], | |
fname=self.save_dir / f'val_batch{ni}_pred.jpg', | |
names=self.names) # pred | |
def pred_to_json(self, predn, filename): | |
stem = Path(filename).stem | |
image_id = int(stem) if stem.isnumeric() else stem | |
box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
for p, b in zip(predn.tolist(), box.tolist()): | |
self.jdict.append({ | |
'image_id': image_id, | |
'category_id': self.class_map[int(p[5])], | |
'bbox': [round(x, 3) for x in b], | |
'score': round(p[4], 5)}) | |
def eval_json(self, stats): | |
if self.args.save_json and self.is_coco and len(self.jdict): | |
anno_json = self.data['path'] / "annotations/instances_val2017.json" # annotations | |
pred_json = self.save_dir / "predictions.json" # predictions | |
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') | |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
check_requirements('pycocotools>=2.0.6') | |
from pycocotools.coco import COCO # noqa | |
from pycocotools.cocoeval import COCOeval # noqa | |
for x in anno_json, pred_json: | |
assert x.is_file(), f"{x} file not found" | |
anno = COCO(str(anno_json)) # init annotations api | |
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
eval = COCOeval(anno, pred, 'bbox') | |
if self.is_coco: | |
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval | |
eval.evaluate() | |
eval.accumulate() | |
eval.summarize() | |
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50 | |
except Exception as e: | |
self.logger.warning(f'pycocotools unable to run: {e}') | |
return stats | |
def val(cfg): | |
cfg.data = cfg.data or "coco128.yaml" | |
validator = DetectionValidator(args=cfg) | |
validator(model=cfg.model) | |
if __name__ == "__main__": | |
val() | |