YOLO / app.py
kisa-misa's picture
Update app.py
60b1040
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import io
import numpy as np
import os
os.system("pip -qq install yoloxdetect==0.0.7")
from yoloxdetect import YoloxDetector
# Images
torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09/0.jpg', '1.jpg')
torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg')
torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg')
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
def get_class_list_from_input(classes_string: str):
if classes_string == "":
return []
classes_list = classes_string.split(",")
classes_list = [x.strip() for x in classes_list]
return classes_list
def plot_results(pil_img, prob, boxes, model, classes_list):
plt.figure(figsize=(16,10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
cl = p.argmax()
object_class = model.config.id2label[cl.item()]
if len(classes_list) > 0 :
if object_class not in classes_list:
continue
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
fill=False, color=c, linewidth=3))
text = f'{object_class}: {p[cl]:0.2f}'
ax.text(xmin, ymin, text, fontsize=15,
bbox=dict(facecolor='yellow', alpha=0.5))
plt.axis('off')
return fig2img(plt.gcf())
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def inference(
image_path: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
image_size: gr.inputs.Slider = 640,
prob_threshold = 0.8,
"",
):
if model_name in ("yolox_s-v0.1.1", "yolox_m-v0.1.1", "yolox_tiny-v0.1.1"):
model = YoloxDetector(f"kadirnar/{model_name}", device="cpu", hf_model=True)
pred = model.predict(image_path=image_path, image_size=image_size)
return pred
else:
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
img = Image.fromarray(img)
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = model(pixel_values, output_attentions=True)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > prob_threshold
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]['boxes']
classes_list = get_class_list_from_input(classes_to_show)
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
return res_img
classes_to_show = gr.components.Textbox(placeholder="e.g. person, boat", label="Classes to use (empty means all classes)")
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(
label="Model Path",
choices=[
"yolox_s-v0.1.1",
"yolox_m-v0.1.1",
"yolox_tiny-v0.1.1",
"yolos-tiny",
"yolos-small",
"yolos-base",
"yolos-small-300",
"yolos-small-dwr"
],
default="kadirnar/yolox_s-v0.1.1",
),
gr.inputs.Slider(minimum=0, maximum=1.0, step=0.01, default=0.9, label="Probability Threshold"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
classes_to_show,
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
examples = [
["1.jpg", "kadirnar/yolox_m-v0.1.1", 0.8, 640, ""],
["2.jpg", "kadirnar/yolox_s-v0.1.1", 0.8, 640, ""],
["3.jpg", "kadirnar/yolox_tiny-v0.1.1", 0.8, 640, ""],
]
demo_app = gr.Interface(
fn=inference,
inputs=inputs,
outputs=outputs,
title="Object Detection with YOLO",
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)