Update app.py
Browse files
app.py
CHANGED
@@ -14,76 +14,13 @@ torch.hub.download_url_to_file('https://tochkanews.ru/wp-content/uploads/2020/09
|
|
14 |
torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg')
|
15 |
torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg')
|
16 |
|
17 |
-
def yolox_inference(
|
18 |
-
image_path: gr.inputs.Image = None,
|
19 |
-
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
|
20 |
-
config_path: gr.inputs.Textbox = 'configs.yolox_s',
|
21 |
-
image_size: gr.inputs.Slider = 640
|
22 |
-
):
|
23 |
-
"""
|
24 |
-
YOLOX inference function
|
25 |
-
Args:
|
26 |
-
image: Input image
|
27 |
-
model_path: Path to the model
|
28 |
-
config_path: Path to the config file
|
29 |
-
image_size: Image size
|
30 |
-
Returns:
|
31 |
-
Rendered image
|
32 |
-
"""
|
33 |
-
|
34 |
-
model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True)
|
35 |
-
pred = model.predict(image_path=image_path, image_size=image_size)
|
36 |
-
return pred
|
37 |
-
|
38 |
-
|
39 |
-
inputs = [
|
40 |
-
gr.inputs.Image(type="filepath", label="Input Image"),
|
41 |
-
gr.inputs.Dropdown(
|
42 |
-
label="Model Path",
|
43 |
-
choices=[
|
44 |
-
"kadirnar/yolox_s-v0.1.1",
|
45 |
-
"kadirnar/yolox_m-v0.1.1",
|
46 |
-
"kadirnar/yolox_tiny-v0.1.1",
|
47 |
-
],
|
48 |
-
default="kadirnar/yolox_s-v0.1.1",
|
49 |
-
),
|
50 |
-
gr.inputs.Dropdown(
|
51 |
-
label="Config Path",
|
52 |
-
choices=[
|
53 |
-
"configs.yolox_s",
|
54 |
-
"configs.yolox_m",
|
55 |
-
"configs.yolox_tiny",
|
56 |
-
],
|
57 |
-
default="configs.yolox_s",
|
58 |
-
),
|
59 |
-
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
60 |
-
]
|
61 |
-
|
62 |
-
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
63 |
-
title = "YOLOX is a high-performance anchor-free YOLO."
|
64 |
-
|
65 |
-
examples = [
|
66 |
-
["1.jpg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640],
|
67 |
-
["2.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640],
|
68 |
-
["3.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640],
|
69 |
-
]
|
70 |
-
|
71 |
-
demo_app = gr.Interface(
|
72 |
-
fn=yolox_inference,
|
73 |
-
inputs=inputs,
|
74 |
-
outputs=outputs,
|
75 |
-
title=title,
|
76 |
-
examples=examples,
|
77 |
-
cache_examples=True,
|
78 |
-
theme='huggingface',
|
79 |
-
)
|
80 |
-
demo_app.launch(debug=True, enable_queue=True)
|
81 |
-
|
82 |
|
83 |
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
84 |
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
85 |
|
86 |
|
|
|
|
|
87 |
def get_class_list_from_input(classes_string: str):
|
88 |
if classes_string == "":
|
89 |
return []
|
@@ -91,29 +28,6 @@ def get_class_list_from_input(classes_string: str):
|
|
91 |
classes_list = [x.strip() for x in classes_list]
|
92 |
return classes_list
|
93 |
|
94 |
-
def infer(img, model_name: str, prob_threshold: int, classes_to_show = str):
|
95 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
|
96 |
-
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
|
97 |
-
|
98 |
-
img = Image.fromarray(img)
|
99 |
-
|
100 |
-
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
|
101 |
-
|
102 |
-
with torch.no_grad():
|
103 |
-
outputs = model(pixel_values, output_attentions=True)
|
104 |
-
|
105 |
-
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
106 |
-
keep = probas.max(-1).values > prob_threshold
|
107 |
-
|
108 |
-
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
109 |
-
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
110 |
-
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
111 |
-
|
112 |
-
classes_list = get_class_list_from_input(classes_to_show)
|
113 |
-
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
|
114 |
-
|
115 |
-
return res_img
|
116 |
-
|
117 |
def plot_results(pil_img, prob, boxes, model, classes_list):
|
118 |
plt.figure(figsize=(16,10))
|
119 |
plt.imshow(pil_img)
|
@@ -142,17 +56,81 @@ def fig2img(fig):
|
|
142 |
img = Image.open(buf)
|
143 |
return img
|
144 |
|
145 |
-
image_in = gr.components.Image()
|
146 |
-
image_out = gr.components.Image()
|
147 |
-
model_choice = gr.components.Dropdown(["yolos-tiny", "yolos-small", "yolos-base", "yolos-small-300", "yolos-small-dwr"], value="yolos-small", label="YOLOS Model")
|
148 |
-
prob_threshold_slider = gr.components.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold")
|
149 |
-
classes_to_show = gr.components.Textbox(placeholder="e.g. car, truck, traffic light", label="Classes to use (empty means all classes)")
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
inputs=
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
examples=examples,
|
156 |
-
|
157 |
-
|
158 |
-
)
|
|
|
|
14 |
torch.hub.download_url_to_file('https://s.rdrom.ru/1/pubs/4/35893/1906770.jpg', '2.jpg')
|
15 |
torch.hub.download_url_to_file('https://static.mk.ru/upload/entities/2022/04/17/07/articles/detailPicture/5b/39/28/b6/ffb1aa636dd62c30e6ff670f84474f75.jpg', '3.jpg')
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
19 |
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
20 |
|
21 |
|
22 |
+
|
23 |
+
|
24 |
def get_class_list_from_input(classes_string: str):
|
25 |
if classes_string == "":
|
26 |
return []
|
|
|
28 |
classes_list = [x.strip() for x in classes_list]
|
29 |
return classes_list
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def plot_results(pil_img, prob, boxes, model, classes_list):
|
32 |
plt.figure(figsize=(16,10))
|
33 |
plt.imshow(pil_img)
|
|
|
56 |
img = Image.open(buf)
|
57 |
return img
|
58 |
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
|
61 |
+
def inference(
|
62 |
+
image_path: gr.inputs.Image = None,
|
63 |
+
model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1',
|
64 |
+
image_size: gr.inputs.Slider = 640
|
65 |
+
):
|
66 |
+
|
67 |
+
if model_name in ("yolox_s-v0.1.1", "yolox_m-v0.1.1", "yolox_tiny-v0.1.1"):
|
68 |
+
model = YoloxDetector(f"kadirnar/{model_name}", device="cpu", hf_model=True)
|
69 |
+
pred = model.predict(image_path=image_path, image_size=image_size)
|
70 |
+
return pred
|
71 |
+
|
72 |
+
else:
|
73 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(f"hustvl/{model_name}")
|
74 |
+
model = YolosForObjectDetection.from_pretrained(f"hustvl/{model_name}")
|
75 |
+
|
76 |
+
img = Image.fromarray(img)
|
77 |
+
|
78 |
+
pixel_values = feature_extractor(img, return_tensors="pt").pixel_values
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model(pixel_values, output_attentions=True)
|
82 |
+
|
83 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
84 |
+
keep = probas.max(-1).values > prob_threshold
|
85 |
+
|
86 |
+
target_sizes = torch.tensor(img.size[::-1]).unsqueeze(0)
|
87 |
+
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
88 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes']
|
89 |
+
|
90 |
+
classes_list = get_class_list_from_input(classes_to_show)
|
91 |
+
res_img = plot_results(img, probas[keep], bboxes_scaled[keep], model, classes_list)
|
92 |
+
|
93 |
+
return res_img
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
inputs = [
|
98 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
99 |
+
image_in,model_choice, prob_threshold_slider, classes_to_show
|
100 |
+
gr.inputs.Dropdown(
|
101 |
+
label="Model Path",
|
102 |
+
choices=[
|
103 |
+
"yolox_s-v0.1.1",
|
104 |
+
"yolox_m-v0.1.1",
|
105 |
+
"yolox_tiny-v0.1.1",
|
106 |
+
"yolos-tiny",
|
107 |
+
"yolos-small",
|
108 |
+
"yolos-base",
|
109 |
+
"yolos-small-300",
|
110 |
+
"yolos-small-dwr"
|
111 |
+
],
|
112 |
+
default="kadirnar/yolox_s-v0.1.1",
|
113 |
+
),
|
114 |
+
gr.inputs.Slider(minimum=0, maximum=1.0, step=0.01, value=0.9, label="Probability Threshold"),
|
115 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
116 |
+
gr.inputs.Textbox(placeholder="e.g. car, truck, traffic light", label="Classes to use (empty means all classes)"),
|
117 |
+
]
|
118 |
+
|
119 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
120 |
+
|
121 |
+
examples = [
|
122 |
+
["1.jpg", "kadirnar/yolox_m-v0.1.1", 0.8, 640, ""],
|
123 |
+
["2.jpg", "kadirnar/yolox_s-v0.1.1", 0.8, 640, ""],
|
124 |
+
["3.jpg", "kadirnar/yolox_tiny-v0.1.1", 0.8, 640, ""],
|
125 |
+
]
|
126 |
+
|
127 |
+
demo_app = gr.Interface(
|
128 |
+
fn=inference,
|
129 |
+
inputs=inputs,
|
130 |
+
outputs=outputs,
|
131 |
+
title="Object Detection with YOLO",
|
132 |
examples=examples,
|
133 |
+
cache_examples=True,
|
134 |
+
theme='huggingface',
|
135 |
+
)
|
136 |
+
demo_app.launch(debug=True, enable_queue=True)
|