File size: 11,360 Bytes
2283b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Ultralytics YOLO 🚀, GPL-3.0 license

from collections import abc
from itertools import repeat
from numbers import Number
from typing import List

import numpy as np

from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh


# From PyTorch internals
def _ntuple(n):

    def parse(x):
        return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))

    return parse


to_4tuple = _ntuple(4)

# `xyxy` means left top and right bottom
# `xywh` means center x, center y and width, height(yolo format)
# `ltwh` means left top and width, height(coco format)
_formats = ["xyxy", "xywh", "ltwh"]

__all__ = ["Bboxes"]


class Bboxes:
    """Now only numpy is supported"""

    def __init__(self, bboxes, format="xyxy") -> None:
        assert format in _formats
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2
        assert bboxes.shape[1] == 4
        self.bboxes = bboxes
        self.format = format
        # self.normalized = normalized

    # def convert(self, format):
    #     assert format in _formats
    #     if self.format == format:
    #         bboxes = self.bboxes
    #     elif self.format == "xyxy":
    #         if format == "xywh":
    #             bboxes = xyxy2xywh(self.bboxes)
    #         else:
    #             bboxes = xyxy2ltwh(self.bboxes)
    #     elif self.format == "xywh":
    #         if format == "xyxy":
    #             bboxes = xywh2xyxy(self.bboxes)
    #         else:
    #             bboxes = xywh2ltwh(self.bboxes)
    #     else:
    #         if format == "xyxy":
    #             bboxes = ltwh2xyxy(self.bboxes)
    #         else:
    #             bboxes = ltwh2xywh(self.bboxes)
    #
    #     return Bboxes(bboxes, format)

    def convert(self, format):
        assert format in _formats
        if self.format == format:
            return
        elif self.format == "xyxy":
            bboxes = xyxy2xywh(self.bboxes) if format == "xywh" else xyxy2ltwh(self.bboxes)
        elif self.format == "xywh":
            bboxes = xywh2xyxy(self.bboxes) if format == "xyxy" else xywh2ltwh(self.bboxes)
        else:
            bboxes = ltwh2xyxy(self.bboxes) if format == "xyxy" else ltwh2xywh(self.bboxes)
        self.bboxes = bboxes
        self.format = format

    def areas(self):
        self.convert("xyxy")
        return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])

    # def denormalize(self, w, h):
    #     if not self.normalized:
    #         return
    #     assert (self.bboxes <= 1.0).all()
    #     self.bboxes[:, 0::2] *= w
    #     self.bboxes[:, 1::2] *= h
    #     self.normalized = False
    #
    # def normalize(self, w, h):
    #     if self.normalized:
    #         return
    #     assert (self.bboxes > 1.0).any()
    #     self.bboxes[:, 0::2] /= w
    #     self.bboxes[:, 1::2] /= h
    #     self.normalized = True

    def mul(self, scale):
        """
        Args:
            scale (tuple | List | int): the scale for four coords.
        """
        if isinstance(scale, Number):
            scale = to_4tuple(scale)
        assert isinstance(scale, (tuple, list))
        assert len(scale) == 4
        self.bboxes[:, 0] *= scale[0]
        self.bboxes[:, 1] *= scale[1]
        self.bboxes[:, 2] *= scale[2]
        self.bboxes[:, 3] *= scale[3]

    def add(self, offset):
        """
        Args:
            offset (tuple | List | int): the offset for four coords.
        """
        if isinstance(offset, Number):
            offset = to_4tuple(offset)
        assert isinstance(offset, (tuple, list))
        assert len(offset) == 4
        self.bboxes[:, 0] += offset[0]
        self.bboxes[:, 1] += offset[1]
        self.bboxes[:, 2] += offset[2]
        self.bboxes[:, 3] += offset[3]

    def __len__(self):
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
        """
        Concatenates a list of Boxes into a single Bboxes

        Arguments:
            boxes_list (list[Bboxes])

        Returns:
            Bboxes: the concatenated Boxes
        """
        assert isinstance(boxes_list, (list, tuple))
        if not boxes_list:
            return cls(np.empty(0))
        assert all(isinstance(box, Bboxes) for box in boxes_list)

        if len(boxes_list) == 1:
            return boxes_list[0]
        return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

    def __getitem__(self, index) -> "Bboxes":
        """
        Args:
            index: int, slice, or a BoolArray

        Returns:
            Bboxes: Create a new :class:`Bboxes` by indexing.
        """
        if isinstance(index, int):
            return Bboxes(self.bboxes[index].view(1, -1))
        b = self.bboxes[index]
        assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
        return Bboxes(b)


class Instances:

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
        """
        Args:
            bboxes (ndarray): bboxes with shape [N, 4].
            segments (list | ndarray): segments.
            keypoints (ndarray): keypoints with shape [N, 17, 2].
        """
        if segments is None:
            segments = []
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
        self.keypoints = keypoints
        self.normalized = normalized

        if len(segments) > 0:
            # list[np.array(1000, 2)] * num_samples
            segments = resample_segments(segments)
            # (N, 1000, 2)
            segments = np.stack(segments, axis=0)
        else:
            segments = np.zeros((0, 1000, 2), dtype=np.float32)
        self.segments = segments

    def convert_bbox(self, format):
        self._bboxes.convert(format=format)

    def bbox_areas(self):
        self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """this might be similar with denormalize func but without normalized sign"""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
        if bbox_only:
            return
        self.segments[..., 0] *= scale_w
        self.segments[..., 1] *= scale_h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= scale_w
            self.keypoints[..., 1] *= scale_h

    def denormalize(self, w, h):
        if not self.normalized:
            return
        self._bboxes.mul(scale=(w, h, w, h))
        self.segments[..., 0] *= w
        self.segments[..., 1] *= h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= w
            self.keypoints[..., 1] *= h
        self.normalized = False

    def normalize(self, w, h):
        if self.normalized:
            return
        self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
        self.segments[..., 0] /= w
        self.segments[..., 1] /= h
        if self.keypoints is not None:
            self.keypoints[..., 0] /= w
            self.keypoints[..., 1] /= h
        self.normalized = True

    def add_padding(self, padw, padh):
        # handle rect and mosaic situation
        assert not self.normalized, "you should add padding with absolute coordinates."
        self._bboxes.add(offset=(padw, padh, padw, padh))
        self.segments[..., 0] += padw
        self.segments[..., 1] += padh
        if self.keypoints is not None:
            self.keypoints[..., 0] += padw
            self.keypoints[..., 1] += padh

    def __getitem__(self, index) -> "Instances":
        """
        Args:
            index: int, slice, or a BoolArray

        Returns:
            Instances: Create a new :class:`Instances` by indexing.
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def flipud(self, h):
        if self._bboxes.format == "xyxy":
            y1 = self.bboxes[:, 1].copy()
            y2 = self.bboxes[:, 3].copy()
            self.bboxes[:, 1] = h - y2
            self.bboxes[:, 3] = h - y1
        else:
            self.bboxes[:, 1] = h - self.bboxes[:, 1]
        self.segments[..., 1] = h - self.segments[..., 1]
        if self.keypoints is not None:
            self.keypoints[..., 1] = h - self.keypoints[..., 1]

    def fliplr(self, w):
        if self._bboxes.format == "xyxy":
            x1 = self.bboxes[:, 0].copy()
            x2 = self.bboxes[:, 2].copy()
            self.bboxes[:, 0] = w - x2
            self.bboxes[:, 2] = w - x1
        else:
            self.bboxes[:, 0] = w - self.bboxes[:, 0]
        self.segments[..., 0] = w - self.segments[..., 0]
        if self.keypoints is not None:
            self.keypoints[..., 0] = w - self.keypoints[..., 0]

    def clip(self, w, h):
        ori_format = self._bboxes.format
        self.convert_bbox(format="xyxy")
        self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
        self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
        if ori_format != "xyxy":
            self.convert_bbox(format=ori_format)
        self.segments[..., 0] = self.segments[..., 0].clip(0, w)
        self.segments[..., 1] = self.segments[..., 1].clip(0, h)
        if self.keypoints is not None:
            self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
            self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

    def update(self, bboxes, segments=None, keypoints=None):
        new_bboxes = Bboxes(bboxes, format=self._bboxes.format)
        self._bboxes = new_bboxes
        if segments is not None:
            self.segments = segments
        if keypoints is not None:
            self.keypoints = keypoints

    def __len__(self):
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
        """
        Concatenates a list of Boxes into a single Bboxes

        Arguments:
            instances_list (list[Bboxes])
            axis

        Returns:
            Boxes: the concatenated Boxes
        """
        assert isinstance(instances_list, (list, tuple))
        if not instances_list:
            return cls(np.empty(0))
        assert all(isinstance(instance, Instances) for instance in instances_list)

        if len(instances_list) == 1:
            return instances_list[0]

        use_keypoint = instances_list[0].keypoints is not None
        bbox_format = instances_list[0]._bboxes.format
        normalized = instances_list[0].normalized

        cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
        cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
        return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

    @property
    def bboxes(self):
        return self._bboxes.bboxes