Spaces:
Build error
Build error
# Ultralytics YOLO 🚀, GPL-3.0 license | |
import os | |
import random | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, dataloader, distributed | |
from ..utils import LOGGER, colorstr | |
from ..utils.torch_utils import torch_distributed_zero_first | |
from .dataset import ClassificationDataset, YOLODataset | |
from .utils import PIN_MEMORY, RANK | |
class InfiniteDataLoader(dataloader.DataLoader): | |
"""Dataloader that reuses workers | |
Uses same syntax as vanilla DataLoader | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler)) | |
self.iterator = super().__iter__() | |
def __len__(self): | |
return len(self.batch_sampler.sampler) | |
def __iter__(self): | |
for _ in range(len(self)): | |
yield next(self.iterator) | |
class _RepeatSampler: | |
"""Sampler that repeats forever | |
Args: | |
sampler (Sampler) | |
""" | |
def __init__(self, sampler): | |
self.sampler = sampler | |
def __iter__(self): | |
while True: | |
yield from iter(self.sampler) | |
def seed_worker(worker_id): | |
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader | |
worker_seed = torch.initial_seed() % 2 ** 32 | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |
def build_dataloader(cfg, batch_size, img_path, stride=32, label_path=None, rank=-1, mode="train"): | |
assert mode in ["train", "val"] | |
shuffle = mode == "train" | |
if cfg.rect and shuffle: | |
LOGGER.warning("WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False") | |
shuffle = False | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = YOLODataset( | |
img_path=img_path, | |
label_path=label_path, | |
imgsz=cfg.imgsz, | |
batch_size=batch_size, | |
augment=mode == "train", # augmentation | |
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function | |
rect=cfg.rect if mode == "train" else True, # rectangular batches | |
cache=cfg.get("cache", None), | |
single_cls=cfg.get("single_cls", False), | |
stride=int(stride), | |
pad=0.0 if mode == "train" else 0.5, | |
prefix=colorstr(f"{mode}: "), | |
use_segments=cfg.task == "segment", | |
use_keypoints=cfg.task == "keypoint") | |
batch_size = min(batch_size, len(dataset)) | |
nd = torch.cuda.device_count() # number of CUDA devices | |
workers = cfg.workers if mode == "train" else cfg.workers * 2 | |
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers | |
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
loader = DataLoader if cfg.image_weights or cfg.close_mosaic else InfiniteDataLoader # allow attribute updates | |
generator = torch.Generator() | |
generator.manual_seed(6148914691236517205 + RANK) | |
return loader(dataset=dataset, | |
batch_size=batch_size, | |
shuffle=shuffle and sampler is None, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=PIN_MEMORY, | |
collate_fn=getattr(dataset, "collate_fn", None), | |
worker_init_fn=seed_worker, | |
generator=generator), dataset | |
# build classification | |
# TODO: using cfg like `build_dataloader` | |
def build_classification_dataloader(path, | |
imgsz=224, | |
batch_size=16, | |
augment=True, | |
cache=False, | |
rank=-1, | |
workers=8, | |
shuffle=True): | |
# Returns Dataloader object to be used with YOLOv5 Classifier | |
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP | |
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache) | |
batch_size = min(batch_size, len(dataset)) | |
nd = torch.cuda.device_count() | |
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) | |
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) | |
generator = torch.Generator() | |
generator.manual_seed(6148914691236517205 + RANK) | |
return InfiniteDataLoader(dataset, | |
batch_size=batch_size, | |
shuffle=shuffle and sampler is None, | |
num_workers=nw, | |
sampler=sampler, | |
pin_memory=PIN_MEMORY, | |
worker_init_fn=seed_worker, | |
generator=generator) # or DataLoader(persistent_workers=True) | |