Spaces:
Build error
Build error
# Ultralytics YOLO π, GPL-3.0 license | |
import json | |
from time import time | |
import torch | |
from ultralytics.hub.utils import PREFIX, sync_analytics | |
from ultralytics.yolo.utils import LOGGER | |
def on_pretrain_routine_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Start timer for upload rate limit | |
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} π") | |
session.t = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit | |
def on_fit_epoch_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
session.metrics_queue[trainer.epoch] = json.dumps(trainer.metrics) # json string | |
if time() - session.t['metrics'] > session.rate_limits['metrics']: | |
session.upload_metrics() | |
session.t['metrics'] = time() # reset timer | |
session.metrics_queue = {} # reset queue | |
def on_model_save(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Upload checkpoints with rate limiting | |
is_best = trainer.best_fitness == trainer.fitness | |
if time() - session.t['ckpt'] > session.rate_limits['ckpt']: | |
LOGGER.info(f"{PREFIX}Uploading checkpoint {session.model_id}") | |
session.upload_model(trainer.epoch, trainer.last, is_best) | |
session.t['ckpt'] = time() # reset timer | |
def on_train_end(trainer): | |
session = getattr(trainer, 'hub_session', None) | |
if session: | |
# Upload final model and metrics with exponential standoff | |
LOGGER.info(f"{PREFIX}Training completed successfully β \n" | |
f"{PREFIX}Uploading final {session.model_id}") | |
session.upload_model(trainer.epoch, trainer.best, map=trainer.metrics['metrics/mAP50-95(B)'], final=True) | |
session.alive = False # stop heartbeats | |
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{session.model_id} π") | |
def on_train_start(trainer): | |
sync_analytics(trainer.args) | |
def on_val_start(validator): | |
sync_analytics(validator.args) | |
def on_predict_start(predictor): | |
sync_analytics(predictor.args) | |
def on_export_start(exporter): | |
sync_analytics(exporter.args) | |
callbacks = { | |
"on_pretrain_routine_end": on_pretrain_routine_end, | |
"on_fit_epoch_end": on_fit_epoch_end, | |
"on_model_save": on_model_save, | |
"on_train_end": on_train_end, | |
"on_train_start": on_train_start, | |
"on_val_start": on_val_start, | |
"on_predict_start": on_predict_start, | |
"on_export_start": on_export_start} | |