File size: 8,110 Bytes
71a0991
 
c99e1c4
 
 
 
71a0991
fae2f45
c99e1c4
71a0991
fea04d7
 
 
 
 
58d79f2
fea04d7
58d79f2
985a4fc
 
 
 
 
 
 
 
 
 
 
 
 
71a0991
c99e1c4
 
71a0991
c99e1c4
 
 
 
 
 
 
 
 
 
28598ee
71a0991
9d19cf4
71a0991
c99e1c4
71a0991
c99e1c4
 
71a0991
c99e1c4
 
 
 
71a0991
c99e1c4
 
28598ee
c99e1c4
 
 
 
 
 
 
 
 
71a0991
c99e1c4
 
 
71a0991
c99e1c4
 
71a0991
c99e1c4
 
 
 
71a0991
c99e1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a0991
c99e1c4
 
 
 
 
 
71a0991
 
c99e1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a0991
c99e1c4
 
71a0991
c99e1c4
71a0991
c99e1c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import time
from pathlib import Path
from loguru import logger
from datetime import datetime
import gradio as gr
import random
import spaces
import torch

from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.utils.preprocess_text_encoder_tokenizer_utils import preprocess_text_encoder_tokenizer
from hyvideo.config import parse_args
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT

from huggingface_hub import snapshot_download

if torch.cuda.device_count() > 0:
    snapshot_download(repo_id="tencent/HunyuanVideo", repo_type="model", local_dir="ckpts", force_download=True)
    snapshot_download(repo_id="xtuner/llava-llama-3-8b-v1_1-transformers", repo_type="model", local_dir="ckpts/llava-llama-3-8b-v1_1-transformers", force_download=True)#

    class Args:
        def __init__(self, input_dir, output_dir):
            self.input_dir = input_dir
            self.output_dir = output_dir

    # Create the object
    args = Args("ckpts/llava-llama-3-8b-v1_1-transformers", "ckpts/text_encoder")
    preprocess_text_encoder_tokenizer(args)
    snapshot_download(repo_id="openai/clip-vit-large-patch14", repo_type="model", local_dir="ckpts/text_encoder_2", force_download=True)

def initialize_model(model_path):
    print("initialize_model: " + model_path)
    if torch.cuda.device_count() == 0:
        return None
    
    args = parse_args()
    models_root_path = Path(model_path)
    if not models_root_path.exists():
        raise ValueError(f"`models_root` not exists: {models_root_path}")
    
    print(f"`models_root` exists: {models_root_path}")
    hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args)
    print("Model initialized: " + model_path)
    return hunyuan_video_sampler

model = initialize_model("ckpts")

def generate_video(
    prompt,
    resolution,
    video_length,
    seed,
    num_inference_steps,
    guidance_scale,
    flow_shift,
    embedded_guidance_scale
):
    print("generate_video (prompt: " + prompt + ")")
    return generate_video_gpu(
        None,
        prompt,
        resolution,
        video_length,
        seed,
        num_inference_steps,
        guidance_scale,
        flow_shift,
        embedded_guidance_scale
    )

@spaces.GPU(duration=120)
def generate_video_gpu(
    model,
    prompt,
    resolution,
    video_length,
    seed,
    num_inference_steps,
    guidance_scale,
    flow_shift,
    embedded_guidance_scale
):
    #print("generate_video_gpu (prompt: " + prompt + ")")
    #if torch.cuda.device_count() == 0:
    #    gr.Warning("Set this space to GPU config to make it work.")
    #    return None
    #
    #seed = None if seed == -1 else seed
    #width, height = resolution.split("x")
    #width, height = int(width), int(height)
    #negative_prompt = "" # not applicable in the inference
    #print("Predicting video...")
    #
    #outputs = model.predict(
    #    prompt=prompt,
    #    height=height,
    #    width=width, 
    #    video_length=video_length,
    #    seed=seed,
    #    negative_prompt=negative_prompt,
    #    infer_steps=num_inference_steps,
    #    guidance_scale=guidance_scale,
    #    num_videos_per_prompt=1,
    #    flow_shift=flow_shift,
    #    batch_size=1,
    #    embedded_guidance_scale=embedded_guidance_scale
    #)
    #
    #print("Video predicted")
    #samples = outputs["samples"]
    #sample = samples[0].unsqueeze(0)
    #
    #save_path = "./gradio_outputs"
    #os.makedirs(save_path, exist_ok=True)
    #
    #time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
    #video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4"
    #save_videos_grid(sample, video_path, fps=24)
    #logger.info(f"Sample saved to: {video_path}")
    #
    #print("Return the video")
    #return video_path
    return None

def create_demo(model_path):
    with gr.Blocks() as demo:
        if torch.cuda.device_count() == 0:
            with gr.Row():
                gr.HTML("""
                    <p style="background-color: red;"><big><big><big><b>⚠️To use <i>Hunyuan Video</i>, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo?duplicate=true">duplicate this space</a> and set a GPU with 80 GB VRAM.</b>
    
                    You can't use <i>Hunyuan Video</i> directly here because this space runs on a CPU, which is not enough for <i>Hunyuan Video</i>. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo/discussions/new">feedback</a> if you have issues.
                    </big></big></big></p><br/>
                    <p style="background-color: light-green;"><big>The space has been successfully deployed on A100 space on 2025-01-23. Synchronize your space to fix the errors.</big></p>
                    """)
        gr.Markdown("# Hunyuan Video Generation")
        
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="A cat walks on the grass, realistic style.")
                with gr.Row():
                    resolution = gr.Dropdown(
                        choices=[
                            # 720p
                            ("1280x720 (16:9, 720p)", "1280x720"),
                            ("720x1280 (9:16, 720p)", "720x1280"), 
                            ("1104x832 (4:3, 720p)", "1104x832"),
                            ("832x1104 (3:4, 720p)", "832x1104"),
                            ("960x960 (1:1, 720p)", "960x960"),
                            # 540p
                            ("960x544 (16:9, 540p)", "960x544"),
                            ("544x960 (9:16, 540p)", "544x960"),
                            ("832x624 (4:3, 540p)", "832x624"), 
                            ("624x832 (3:4, 540p)", "624x832"),
                            ("720x720 (1:1, 540p)", "720x720"),
                        ],
                        value="832x624",
                        label="Resolution"
                    )
                    video_length = gr.Dropdown(
                        label="Video Length",
                        choices=[
                            ("2s(65f)", 65),
                            ("5s(129f)", 129),
                        ],
                        value=65,
                    )
                num_inference_steps = gr.Slider(1, 100, value=5, step=1, label="Number of Inference Steps")
                
                with gr.Accordion("Advanced Options", open=False):
                    with gr.Column():
                        seed = gr.Slider(label="Seed (-1 for random)", value=-1, minimum=-1, maximum=2**63 - 1, step=1)
                        guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale")
                        flow_shift = gr.Slider(0.0, 10.0, value=7.0, step=0.1, label="Flow Shift") 
                        embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale")

                generate_btn = gr.Button(value = "🚀 Generate Video", variant = "primary")
            
            with gr.Row():
                output = gr.Video(label = "Generated Video", autoplay = True)

        gr.Markdown("""
## **Alternatives**
If you can't use _Hunyuan Video_, you can use _[CogVideoX](https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space)_ or _[LTX Video Playground](https://huggingface.co/spaces/Lightricks/LTX-Video-Playground)_ instead.
                    """)
        
        generate_btn.click(
            fn=generate_video,
            inputs=[
                prompt,
                resolution,
                video_length,
                seed,
                num_inference_steps,
                guidance_scale,
                flow_shift,
                embedded_guidance_scale
            ],
            outputs=output
        )
    
    return demo

if __name__ == "__main__":
    os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
    demo = create_demo("ckpts")
    demo.queue(10).launch()