Spaces:
Runtime error
Runtime error
File size: 8,110 Bytes
71a0991 c99e1c4 71a0991 fae2f45 c99e1c4 71a0991 fea04d7 58d79f2 fea04d7 58d79f2 985a4fc 71a0991 c99e1c4 71a0991 c99e1c4 28598ee 71a0991 9d19cf4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 28598ee c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 71a0991 c99e1c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import time
from pathlib import Path
from loguru import logger
from datetime import datetime
import gradio as gr
import random
import spaces
import torch
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.utils.preprocess_text_encoder_tokenizer_utils import preprocess_text_encoder_tokenizer
from hyvideo.config import parse_args
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT
from huggingface_hub import snapshot_download
if torch.cuda.device_count() > 0:
snapshot_download(repo_id="tencent/HunyuanVideo", repo_type="model", local_dir="ckpts", force_download=True)
snapshot_download(repo_id="xtuner/llava-llama-3-8b-v1_1-transformers", repo_type="model", local_dir="ckpts/llava-llama-3-8b-v1_1-transformers", force_download=True)#
class Args:
def __init__(self, input_dir, output_dir):
self.input_dir = input_dir
self.output_dir = output_dir
# Create the object
args = Args("ckpts/llava-llama-3-8b-v1_1-transformers", "ckpts/text_encoder")
preprocess_text_encoder_tokenizer(args)
snapshot_download(repo_id="openai/clip-vit-large-patch14", repo_type="model", local_dir="ckpts/text_encoder_2", force_download=True)
def initialize_model(model_path):
print("initialize_model: " + model_path)
if torch.cuda.device_count() == 0:
return None
args = parse_args()
models_root_path = Path(model_path)
if not models_root_path.exists():
raise ValueError(f"`models_root` not exists: {models_root_path}")
print(f"`models_root` exists: {models_root_path}")
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(models_root_path, args=args)
print("Model initialized: " + model_path)
return hunyuan_video_sampler
model = initialize_model("ckpts")
def generate_video(
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale
):
print("generate_video (prompt: " + prompt + ")")
return generate_video_gpu(
None,
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale
)
@spaces.GPU(duration=120)
def generate_video_gpu(
model,
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale
):
#print("generate_video_gpu (prompt: " + prompt + ")")
#if torch.cuda.device_count() == 0:
# gr.Warning("Set this space to GPU config to make it work.")
# return None
#
#seed = None if seed == -1 else seed
#width, height = resolution.split("x")
#width, height = int(width), int(height)
#negative_prompt = "" # not applicable in the inference
#print("Predicting video...")
#
#outputs = model.predict(
# prompt=prompt,
# height=height,
# width=width,
# video_length=video_length,
# seed=seed,
# negative_prompt=negative_prompt,
# infer_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# num_videos_per_prompt=1,
# flow_shift=flow_shift,
# batch_size=1,
# embedded_guidance_scale=embedded_guidance_scale
#)
#
#print("Video predicted")
#samples = outputs["samples"]
#sample = samples[0].unsqueeze(0)
#
#save_path = "./gradio_outputs"
#os.makedirs(save_path, exist_ok=True)
#
#time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%H:%M:%S")
#video_path = f"{save_path}/{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4"
#save_videos_grid(sample, video_path, fps=24)
#logger.info(f"Sample saved to: {video_path}")
#
#print("Return the video")
#return video_path
return None
def create_demo(model_path):
with gr.Blocks() as demo:
if torch.cuda.device_count() == 0:
with gr.Row():
gr.HTML("""
<p style="background-color: red;"><big><big><big><b>⚠️To use <i>Hunyuan Video</i>, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo?duplicate=true">duplicate this space</a> and set a GPU with 80 GB VRAM.</b>
You can't use <i>Hunyuan Video</i> directly here because this space runs on a CPU, which is not enough for <i>Hunyuan Video</i>. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/HunyuanVideo/discussions/new">feedback</a> if you have issues.
</big></big></big></p><br/>
<p style="background-color: light-green;"><big>The space has been successfully deployed on A100 space on 2025-01-23. Synchronize your space to fix the errors.</big></p>
""")
gr.Markdown("# Hunyuan Video Generation")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A cat walks on the grass, realistic style.")
with gr.Row():
resolution = gr.Dropdown(
choices=[
# 720p
("1280x720 (16:9, 720p)", "1280x720"),
("720x1280 (9:16, 720p)", "720x1280"),
("1104x832 (4:3, 720p)", "1104x832"),
("832x1104 (3:4, 720p)", "832x1104"),
("960x960 (1:1, 720p)", "960x960"),
# 540p
("960x544 (16:9, 540p)", "960x544"),
("544x960 (9:16, 540p)", "544x960"),
("832x624 (4:3, 540p)", "832x624"),
("624x832 (3:4, 540p)", "624x832"),
("720x720 (1:1, 540p)", "720x720"),
],
value="832x624",
label="Resolution"
)
video_length = gr.Dropdown(
label="Video Length",
choices=[
("2s(65f)", 65),
("5s(129f)", 129),
],
value=65,
)
num_inference_steps = gr.Slider(1, 100, value=5, step=1, label="Number of Inference Steps")
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
seed = gr.Slider(label="Seed (-1 for random)", value=-1, minimum=-1, maximum=2**63 - 1, step=1)
guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale")
flow_shift = gr.Slider(0.0, 10.0, value=7.0, step=0.1, label="Flow Shift")
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale")
generate_btn = gr.Button(value = "🚀 Generate Video", variant = "primary")
with gr.Row():
output = gr.Video(label = "Generated Video", autoplay = True)
gr.Markdown("""
## **Alternatives**
If you can't use _Hunyuan Video_, you can use _[CogVideoX](https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space)_ or _[LTX Video Playground](https://huggingface.co/spaces/Lightricks/LTX-Video-Playground)_ instead.
""")
generate_btn.click(
fn=generate_video,
inputs=[
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale
],
outputs=output
)
return demo
if __name__ == "__main__":
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
demo = create_demo("ckpts")
demo.queue(10).launch() |