from pymed import PubMed from typing import List from haystack import component from haystack import Document from haystack.components.generators import HuggingFaceTGIGenerator from dotenv import load_dotenv import os from haystack import Pipeline from haystack.components.builders.prompt_builder import PromptBuilder import gradio as gr import time # load_dotenv() # os.environ['HUGGINGFACE_API_KEY'] = os.getenv('HUGGINGFACE_API_KEY') pubmed = PubMed(tool="Haystack2.0Prototype", email="dummyemail@gmail.com") def documentize(article): return Document(content=article.abstract, meta={'title': article.title, 'keywords': article.keywords}) @component class PubMedFetcher(): @component.output_types(articles=List[Document]) def run(self, queries: list[str]): cleaned_queries = queries[0].strip().split('\n') articles = [] try: for query in cleaned_queries: response = pubmed.query(query, max_results = 1) documents = [documentize(article) for article in response] articles.extend(documents) except Exception as e: print(e) print(f"Couldn't fetch articles for queries: {queries}" ) results = {'articles': articles} return results keyword_llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1") keyword_llm.warm_up() llm = HuggingFaceTGIGenerator("mistralai/Mixtral-8x7B-Instruct-v0.1") llm.warm_up() keyword_prompt_template = """ Your task is to convert the following question into 3 keywords that can be used to find relevant medical research papers on PubMed. Here is an examples: question: "What are the latest treatments for major depressive disorder?" keywords: Antidepressive Agents Depressive Disorder, Major Treatment-Resistant depression --- question: {{ question }} keywords: """ prompt_template = """ Answer the question truthfully based on the given documents. If the documents don't contain an answer, use your existing knowledge base. q: {{ question }} Articles: {% for article in articles %} {{article.content}} keywords: {{article.meta['keywords']}} title: {{article.meta['title']}} {% endfor %} """ keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template) prompt_builder = PromptBuilder(template=prompt_template) fetcher = PubMedFetcher() pipe = Pipeline() pipe.add_component("keyword_prompt_builder", keyword_prompt_builder) pipe.add_component("keyword_llm", keyword_llm) pipe.add_component("pubmed_fetcher", fetcher) pipe.add_component("prompt_builder", prompt_builder) pipe.add_component("llm", llm) pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt") pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries") pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles") pipe.connect("prompt_builder.prompt", "llm.prompt") def ask(question): output = pipe.run(data={"keyword_prompt_builder":{"question":question}, "prompt_builder":{"question": question}, "llm":{"generation_kwargs": {"max_new_tokens": 500}}}) print(question) print(output['llm']['replies'][0]) return output['llm']['replies'][0] # result = ask("How are mRNA vaccines being used for cancer treatment?") # print(result) iface = gr.Interface(fn=ask, inputs=gr.Textbox( value="How are mRNA vaccines being used for cancer treatment?"), outputs="markdown", title="LLM Augmented Q&A over PubMed Search Engine", description="Ask a question about BioMedical and get an answer from a friendly AI assistant.", examples=[["How are mRNA vaccines being used for cancer treatment?"], ["Suggest me some Case Studies related to Pneumonia."], ["Tell me about HIV AIDS."],["Suggest some case studies related to Auto Immune Disorders."], ["How to treat a COVID infected Patient?"]], theme=gr.themes.Soft(), allow_flagging="never",) iface.launch(debug=True)