Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline | |
import gradio as gr | |
import chromadb | |
from langchain.document_loaders import PyPDFDirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_huggingface import HuggingFacePipeline | |
# Download the model from HuggingFace | |
model_name = "anakin87/zephyr-7b-alpha-sharded" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
quantization_config=bnb_config | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.bos_token_id = 1 # Set beginning of sentence token id | |
# Specify embedding model | |
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" | |
model_kwargs = {"device": "cpu"} # Using CPU since GPU is not available | |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs=model_kwargs) | |
# Load the documents (replace this with your document loading logic) | |
documents = ["Sample document text 1", "Sample document text 2"] | |
# Split the documents into small chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
all_splits = text_splitter.split_documents(documents) | |
# Embed document chunks | |
vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db") | |
# Specify the retriever | |
retriever = vectordb.as_retriever() | |
# Build HuggingFace pipeline for using zephyr-7b-alpha | |
pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
use_cache=True, | |
device_map="auto", | |
max_length=2048, | |
do_sample=True, | |
top_k=5, | |
num_return_sequences=1, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Specify the llm | |
llm = HuggingFacePipeline(pipeline=pipeline) | |
# Define the create_conversation function | |
def create_conversation(query: str, chat_history: list) -> tuple: | |
try: | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', | |
return_messages=False | |
) | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
memory=memory, | |
get_chat_history=lambda h: h, | |
) | |
result = qa_chain({'question': query, 'chat_history': chat_history}) | |
chat_history.append((query, result['answer'])) | |
return '', chat_history | |
except Exception as e: | |
chat_history.append((query, e)) | |
return '', chat_history | |
# Define the Gradio UI | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(label='My Chatbot') | |
msg = gr.Textbox() | |
clear = gr.ClearButton([msg, chatbot]) | |
msg.submit(create_conversation, [msg, chatbot], [msg, chatbot]) | |
# Launch the Gradio demo | |
demo.launch() | |