Karthik Raja commited on
Commit
1225f38
·
verified ·
1 Parent(s): db6c81a

Update with latest

Browse files
Files changed (1) hide show
  1. app.py +19 -322
app.py CHANGED
@@ -1,329 +1,26 @@
1
- import os
2
-
3
  import gradio as gr
4
- from huggingface_hub import Repository
5
- from text_generation import Client
6
-
7
-
8
-
9
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
- API_TOKEN = os.environ.get("API_TOKEN", None)
11
- API_URL = os.environ.get("API_URL", None)
12
- API_URL = "https://api-inference.huggingface.co/models/timdettmers/guanaco-33b-merged"
13
-
14
- client = Client(
15
- API_URL,
16
- headers={"Authorization": f"Bearer {API_TOKEN}"},
17
- )
18
-
19
- repo = None
20
-
21
-
22
- def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
23
- past = []
24
- for data in chatbot:
25
- user_data, model_data = data
26
-
27
- if not user_data.startswith(user_name):
28
- user_data = user_name + user_data
29
- if not model_data.startswith(sep + assistant_name):
30
- model_data = sep + assistant_name + model_data
31
-
32
- past.append(user_data + model_data.rstrip() + sep)
33
-
34
- if not inputs.startswith(user_name):
35
- inputs = user_name + inputs
36
-
37
- total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
38
-
39
- return total_inputs
40
-
41
-
42
- def has_no_history(chatbot, history):
43
- return not chatbot and not history
44
-
45
- info = {"intro":"""My name is Karthik raja, I live in Chennai, India.I am an experienced programmer, I have honed my skills in competitive programming and machine learning. Through my work in these areas, I have
46
- developed a strong foundation in data analysis and model selection, which has allowed me to achieve high accuracy in my projects. My expertise
47
- extends to computer vision and natural language processing, and I am particularly interested in exploring cutting‐edge techniques like few‐shot
48
- learning and other meta‐learning methods to enhance NLP applications. I have taken part in several ML competitions, including Imageclef and
49
- Hasoc, and have consistently ranked highly. I have also been exploring multilingual model analysis, leveraging the power of few‐shot learning
50
- to develop highly efficient and accurate models. Overall, my expertise in programming, machine learning, and NLP, combined with my passion
51
- for exploring cutting‐edge techniques such as few‐shot learning, make me a valuable asset to any team. """
52
- ,"education": """I completed my 10th grade in P.S.Senior Secondary School in 2017 and was a school topper.I completed my 12th grade in P.S.Senior Secondary School in 2019 and passed with 91%.
53
- And this is my highest degree of qualification.I graduated from SSN College of engineering with 8.9 CGPA with bachelor's degree in computer scince and engineering in 2023.
54
- I haven't done Masters or any Postgraduate degrees yet."""
55
- ,"industry": """
56
- I did my industry internship at Citi Corp,India as a Website Developer between May 2022 and Aug 2022.
57
- In this internship opportunity I was able to collabore with with a four‐member team to develop a full fledged website using springtools with data extraction from H2 database.
58
- """
59
- ,"research": """I have a stellar research profile as well, I have published 3 papers in conferences and 1 is underreview in a journal.
60
- My first publication is on Neural Network for TB analysis which was created for CEURS-WS conference Image Clef contest published in 2021.
61
- Second being Abusive and Threatening Language
62
- Detection in Native Urdu Script Tweets Exploring Four Conventional Machine Learning Techniques and MLP
63
- Fire conference where we used Naive Bayes,LSTM BERT with different tokenizing methods with translation.
64
- Third being paper titled Offensive Text Prediction using Machine
65
- Learning and Deep Learning Approaches Ceur‐ws conference, where we explored bagging like techniques with the models mentioned above.
66
- I was able to publish my Final Year Project in a journal,Counterfactual Detection Neural Processing
67
- Letters, this is under review.
68
- Apart from papers I have also contributed to creation of application for the
69
- National Institute of Siddha – Ministry of AYUSH(GoI), AIIMS Jodhpur, the Siddha Expert System between Sep‐Nov 2022, which was used to
70
- Analyzed Siddha prognosis transcripts written in the Tamil regional language and Built an expert system to perform a nine‐way classification of Siddha diseases.
71
- I was also able to work for the Tamil Nadu State Police for Suspicious Vehicle Tracking System through multiple cameras between Feb 2022 ‐ July 2022.
72
- Here we Analysed various DeepLearning models for feature extraction, techniques like key frame extraction and Explored various matching models like siamese and metric mesures like cosine distance for vehicle Reid.
73
- We had to Use prebuilt kalman filter and DeepSORT models to increase precision and to avoid occlusion.In this project we Experimented with various object detection, localization, and tracking models.
74
- In another one of my research endevors we were able to develop an arm prototype for a underwater vehicle for UnderWater Remote Operated Vehicle Lab in my undergrad college.
75
- For this I Helped design an grabber arm using CAD, trained Yolo models for object detection and worked on design and movement for the arm,
76
- Some of my other projects include
77
- Non‐residential Builtup Area classification from medium resolution satellite Chennai, India
78
- India Meteorological Department (IMD), Ministry of Earth Sciences (MoES). (for this we won the Smart India
79
- Hackathon ).
80
- Person ReId in a large scale system in undergrad college.
81
- """
82
- ,"open-src":"""
83
- I have also contributed to open source and have regularly been part of octoberFest, and have contributed to popular libraries like Ivy Unify, for more info check out https://github.com/kitrak-rev.
84
- These are my profile links
85
- Connect with me on either: [email protected], or https://www.linkedin.com/in/kitrak-rev/, or https://github.com/kitrak-rev.
86
- """
87
- ,"clubs":"""In my college I held the following positions:
88
- • IEEECS Student Chapter Core Commitee Member (Vice Chair)
89
- • IEEE Student Chapter Core Commitee Member (Treasurer)
90
- • ACM Student Chapter Core Commitee Member (Event Deputy Head)
91
- • Computer Society of India Student Chapter Core Committee Member (Vice Chair)
92
- • SSN Coding Club Commitee Member (Competitive Programming Team)
93
- I was given the task to explain BART model and its usage in Dall‐e like models in IVA pre‐conference workshop 2023."""
94
- ,"description":"""
95
- My fullname is karthik Raja Anandan.I am a male. I am 22 years old. I was born in 2001 in the month of February. I graduated from SSN College of Engineering. And I am currently looking for an internship in the ML and datascience field."""
96
-
97
- }
98
- total_info = " ".join([f"{key}:{item} \n" for key,item in info.items()])
99
-
100
- header = total_info+"""
101
- Assume you are karthik Raja Anandan mentioned previously.With the help of the details provided above, answer the following crisply in first person: """
102
- prompt_template = "### Human:"+header+" {query}\n### Assistant:{response}"
103
-
104
-
105
- def generate(
106
- user_message,
107
- chatbot,
108
- history,
109
- temperature,
110
- top_p,
111
- max_new_tokens,
112
- repetition_penalty,
113
- ):
114
- # Don't return meaningless message when the input is empty
115
- if not user_message:
116
- print("Empty input")
117
-
118
- history.append(user_message)
119
-
120
- past_messages = []
121
- for data in chatbot:
122
- user_data, model_data = data
123
-
124
- past_messages.extend(
125
- [{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
126
- )
127
-
128
- if len(past_messages) < 1:
129
- prompt = header + prompt_template.format(query=user_message, response="")
130
- else:
131
- prompt = header
132
- for i in range(0, len(past_messages), 2):
133
- intermediate_prompt = prompt_template.format(query=past_messages[i]["content"], response=past_messages[i+1]["content"])
134
- print("intermediate: ", intermediate_prompt)
135
- prompt = prompt + '\n' + intermediate_prompt
136
-
137
- prompt = prompt + prompt_template.format(query=user_message, response="")
138
-
139
 
140
- generate_kwargs = {
141
- "temperature": temperature,
142
- "top_p": top_p,
143
- "max_new_tokens": max_new_tokens,
144
- }
145
 
146
- temperature = float(temperature)
147
- if temperature < 1e-2:
148
- temperature = 1e-2
149
- top_p = float(top_p)
150
-
151
- generate_kwargs = dict(
152
- temperature=temperature,
153
- max_new_tokens=max_new_tokens,
154
- top_p=top_p,
155
- repetition_penalty=repetition_penalty,
156
- do_sample=True,
157
- truncate=999,
158
- seed=42,
159
- )
160
-
161
- stream = client.generate_stream(
162
- prompt,
163
- **generate_kwargs,
164
- )
165
-
166
- output = ""
167
- for idx, response in enumerate(stream):
168
- if response.token.text == '':
169
- break
170
-
171
- if response.token.special:
172
- continue
173
- output += response.token.text
174
- if idx == 0:
175
- history.append(" " + output)
176
- else:
177
- history[-1] = output
178
-
179
- chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
180
-
181
- yield chat, history, user_message, ""
182
-
183
- return chat, history, user_message, ""
184
-
185
-
186
- examples = [
187
- "Give a short summary about you"
188
  ]
 
189
 
 
 
 
 
 
190
 
191
- def clear_chat():
192
- return [], []
193
-
194
-
195
- def process_example(args):
196
- for [x, y] in generate(args):
197
- pass
198
- return [x, y]
199
-
200
-
201
- title = """<h1 align="center">Karthik Raja AI Clone 🙋‍♂️ </h1>"""
202
- custom_css = """
203
- #banner-image {
204
- display: block;
205
- margin-left: auto;
206
- margin-right: auto;
207
- }
208
- #chat-message {
209
- font-size: 14px;
210
- min-height: 300px;
211
- }
212
- """
213
-
214
- with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
215
- gr.HTML(title)
216
-
217
- with gr.Row():
218
- with gr.Column():
219
- gr.Markdown(
220
- """
221
- 💻 This demo attempts to be a ai-clone of a person with prompts on the Guanaco 33B model, released together with the paper [QLoRA](https://arxiv.org/abs/2305.14314)
222
- <br />
223
- Note: The information given by the AI-clone may not be 100% accurate, check with the bot's owner to confirm.
224
- """
225
- )
226
-
227
- with gr.Row():
228
- with gr.Box():
229
- output = gr.Markdown("Ask any questions that you want to ask Karthik Raja")
230
- chatbot = gr.Chatbot(elem_id="chat-message", label="AI-clone of Karthik Raja")
231
-
232
- with gr.Row():
233
- with gr.Column(scale=3):
234
- user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
235
- with gr.Row():
236
- send_button = gr.Button("Send", elem_id="send-btn", visible=True)
237
-
238
- clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
239
-
240
- with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
241
- temperature = gr.Slider(
242
- label="Temperature",
243
- value=0.7,
244
- minimum=0.0,
245
- maximum=1.0,
246
- step=0.1,
247
- interactive=True,
248
- info="Higher values produce more diverse outputs",
249
- )
250
- top_p = gr.Slider(
251
- label="Top-p (nucleus sampling)",
252
- value=0.9,
253
- minimum=0.0,
254
- maximum=1,
255
- step=0.05,
256
- interactive=True,
257
- info="Higher values sample more low-probability tokens",
258
- )
259
- max_new_tokens = gr.Slider(
260
- label="Max new tokens",
261
- value=1024,
262
- minimum=0,
263
- maximum=2048,
264
- step=4,
265
- interactive=True,
266
- info="The maximum numbers of new tokens",
267
- )
268
- repetition_penalty = gr.Slider(
269
- label="Repetition Penalty",
270
- value=1.2,
271
- minimum=0.0,
272
- maximum=10,
273
- step=0.1,
274
- interactive=True,
275
- info="The parameter for repetition penalty. 1.0 means no penalty.",
276
- )
277
- with gr.Row():
278
- gr.Examples(
279
- examples=examples,
280
- inputs=[user_message],
281
- cache_examples=False,
282
- fn=process_example,
283
- outputs=[output],
284
- )
285
-
286
- with gr.Row():
287
- gr.Markdown(
288
- "Disclaimer: The model can produce factually incorrect output, and should not be relied on to produce "
289
- "factually accurate information. The model was trained on various public datasets; while great efforts "
290
- "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
291
- "biased, or otherwise offensive outputs.",
292
- elem_classes=["disclaimer"],
293
- )
294
-
295
-
296
- history = gr.State([])
297
- last_user_message = gr.State("")
298
-
299
- user_message.submit(
300
- generate,
301
- inputs=[
302
- user_message,
303
- chatbot,
304
- history,
305
- temperature,
306
- top_p,
307
- max_new_tokens,
308
- repetition_penalty,
309
- ],
310
- outputs=[chatbot, history, last_user_message, user_message],
311
- )
312
-
313
- send_button.click(
314
- generate,
315
- inputs=[
316
- user_message,
317
- chatbot,
318
- history,
319
- temperature,
320
- top_p,
321
- max_new_tokens,
322
- repetition_penalty,
323
- ],
324
- outputs=[chatbot, history, last_user_message, user_message],
325
- )
326
-
327
- clear_chat_button.click(clear_chat, outputs=[chatbot, history])
328
 
329
- demo.queue(concurrency_count=16).launch()
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ message_list = []
4
+ response_list = []
5
+ from transformers import pipeline
 
 
6
 
7
+ messages = [
8
+ {"role": "system", "content": " You are Karthik a software engineer"},
9
+ {"role": "user", "content": "You are to impersonate as Karthik"},
10
+ {"role": "assistant", "content": "I am Karthik a software engineer"},
11
+ {"role": "user", "content": "Who are you? "},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ]
13
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3",max_new_tokens=5000)
14
 
15
+ def mini_chatbot(message, history):
16
+ conversation = Conversation(text=message,
17
+ past_user_inputs=message_list,
18
+ generated_responses=response_list)
19
+ conversation = chatbot(conversation)
20
 
21
+ return conversation.generated_responses[-1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ demo_chatbot = gr.ChatInterface(mini_chatbot,
24
+ title="My Chatbot",
25
+ description="Enter text to start chatting.")
26
+ demo_chatbot.launch()