File size: 8,476 Bytes
11554c5
 
9e24bfb
11554c5
 
78c8e0b
11554c5
 
 
 
78c8e0b
11554c5
 
 
9e24bfb
78c8e0b
11554c5
 
9e24bfb
78c8e0b
 
 
 
 
 
 
 
 
11554c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from pathlib import Path
import spaces
import gradio as gr
import imageio
import torch
from torchvision.datasets.utils import download_and_extract_archive
from PIL import Image
from omegaconf import OmegaConf
from algorithms.dfot import DFoTVideoPose
from utils.ckpt_utils import download_pretrained
from utils.huggingface_utils import download_from_hf
from datasets.video.utils.io import read_video
from datasets.video import RealEstate10KAdvancedVideoDataset
from export import export_to_video

DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
DATASET_DIR = Path("data/real-estate-10k-tiny")
LONG_LENGTH = 20 # seconds

if not DATASET_DIR.exists():
    DATASET_DIR.mkdir(parents=True)
    download_and_extract_archive(
        DATASET_URL,
        DATASET_DIR.parent,
        remove_finished=True,
    )


metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
video_list = [
    read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
]
first_frame_list = [
    (video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
    for video in video_list
]
poses_list = [
    torch.cat(
        [
            poses[:, :4],
            poses[:, 6:],
        ],
        dim=-1,
    ).to(torch.float32)
    for poses in (
        torch.load(DATASET_DIR / "test_poses" / f"{path.stem}.pt")
        for path in metadata["video_paths"]
    )
]

# pylint: disable-next=no-value-for-parameter
dfot = DFoTVideoPose.load_from_checkpoint(
    checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
    cfg=OmegaConf.load("config.yaml"),
).eval()
dfot.to("cuda")

def prepare_long_gt_video(idx: int):
    video = video_list[idx]
    indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * 10, dtype=torch.long)
    return export_to_video(video[indices], fps=10)

@spaces.GPU(duration=120)
@torch.no_grad()
def single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)):
    video = video_list[idx]
    poses = poses_list[idx]
    indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
    xs = video[indices].unsqueeze(0).to("cuda")
    conditions = poses[indices].unsqueeze(0).to("cuda")
    dfot.cfg.tasks.prediction.history_guidance.guidance_scale = guidance_scale
    dfot.cfg.tasks.prediction.keyframe_density = 0.6 / fps
    # dfot.cfg.tasks.interpolation.history_guidance.guidance_scale = guidance_scale
    gen_video = dfot._unnormalize_x(
        dfot._predict_videos(
            dfot._normalize_x(xs),
            conditions,
        )
    )
    return export_to_video(gen_video[0].detach().cpu(), fps=fps)


# Create the Gradio Blocks
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
    gr.HTML(
        """
    <style>
    [data-tab-id="task-1"], [data-tab-id="task-2"], [data-tab-id="task-3"] {
        font-size: 16px !important;
        font-weight: bold;
    }
    </style>
    """
    )

    gr.Markdown("# Diffusion Forcing Transformer and History Guidance")
    gr.Markdown(
        "### Official Interactive Demo for [_History-guided Video Diffusion_](todo)"
    )
    with gr.Row():
        gr.Button(value="🌐 Website", link="todo")
        gr.Button(value="📄 Paper", link="https://boyuan.space/history-guidance")
        gr.Button(
            value="💻 Code",
            link="https://github.com/kwsong0113/diffusion-forcing-transformer",
        )
        gr.Button(
            value="🤗 Pretrained Models", link="https://huggingface.co/kiwhansong/DFoT"
        )

    with gr.Tab("Single Image → Long Video", id="task-1"):
        gr.Markdown(
            """
            ## Demo 2: Single Image → Long Video
            > #### **TL;DR:** _Diffusion Forcing Transformer, with History Guidance, can stably generate long videos, via sliding window rollouts and interpolation._
        """
        )

        stage = gr.State(value="Selection")
        selected_index = gr.State(value=None)

        @gr.render(inputs=[stage, selected_index])
        def render_stage(s, idx):
            match s:
                case "Selection":
                    image_gallery = gr.Gallery(
                        value=first_frame_list,
                        label="Select an image to animate",
                        columns=[8],
                        selected_index=idx,
                    )

                    @image_gallery.select(inputs=None, outputs=selected_index)
                    def update_selection(selection: gr.SelectData):
                        return selection.index

                    select_button = gr.Button("Select")

                    @select_button.click(inputs=selected_index, outputs=stage)
                    def move_to_generation(idx: int):
                        if idx is None:
                            gr.Warning("Image not selected!")
                            return "Selection"
                        else:
                            return "Generation"

                case "Generation":
                    with gr.Row():
                        gr.Image(value=first_frame_list[idx], label="Input Image")
                        # gr.Video(value=metadata["video_paths"][idx], label="Ground Truth Video")
                        gr.Video(value=prepare_long_gt_video(idx), label="Ground Truth Video")
                        video = gr.Video(label="Generated Video")

                        with gr.Column():
                            guidance_scale = gr.Slider(
                                minimum=1,
                                maximum=6,
                                value=4,
                                step=0.5,
                                label="History Guidance Scale",
                                info="Without history guidance: 1.0; Recommended: 4.0",
                                interactive=True,
                            )
                            fps = gr.Slider(
                                minimum=1,
                                maximum=10,
                                value=4,
                                step=1,
                                label="FPS",
                                info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
                                interactive=True,
                            )
                            generate_button = gr.Button("Generate Video").click(
                                fn=single_image_to_long_video,
                                inputs=[selected_index, guidance_scale, fps],
                                outputs=video,
                            )
                    # def generate_video(idx: int):
                    #     gr.Video(value=single_image_to_long_video(idx))

        # Function to update the state with the selected index

        # def show_warning(selection: gr.SelectData):
        #     gr.Warning(f"Your choice is #{selection.index}, with image: {selection.value['image']['path']}!")

        # # image_gallery.select(fn=show_warning, inputs=None)

        # # Show the generate button only if an image is selected
        # selected_index.change(fn=lambda idx: idx is not None, inputs=selected_index, outputs=generate_button)

    with gr.Tab("Any Images → Video", id="task-2"):
        gr.Markdown(
            """
            ## Demo 1: Any Images → Video
            > #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
        """
        )
        input_text_1 = gr.Textbox(
            lines=2, placeholder="Enter text for Video Model 1..."
        )
        output_video_1 = gr.Video()
        generate_button_1 = gr.Button("Generate Video")

    with gr.Tab("Single Image → Extremely Long Video", id="task-3"):
        gr.Markdown(
            """
            ## Demo 3: Single Image → Extremely Long Video
            > #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given **variable number of context frames**._
        """
        )
        input_text_2 = gr.Textbox(
            lines=2, placeholder="Enter text for Video Model 2..."
        )
        output_video_2 = gr.Video()
        generate_button_2 = gr.Button("Generate Video")

if __name__ == "__main__":
    demo.launch()