Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,096 Bytes
27b7558 e75fcb6 27b7558 e75fcb6 27b7558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import datetime
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np
import matplotlib.pyplot as plt
import requests
import json
from langchain_openai import AzureOpenAIEmbeddings
from langchain.llms import OpenAI
from langchain_openai import AzureChatOpenAI
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
embeddings = AzureOpenAIEmbeddings(
deployment="embedding",
model="text-embedding-ada-002",
azure_endpoint=st.secrets["endpoint1"],
)
llm = AzureChatOpenAI(
deployment_name="gpt4_small",
openai_api_version="2023-12-01-preview",
azure_endpoint=st.secrets["endpoint2"],
openai_api_key=st.secrets["key2"],
openai_api_type="azure",
temperature=0.
)
@st.cache_data
def get_feeds_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Loaded data")
return data
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
dateval = "27-Jun-2023"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)
@st.cache_data
def get_embedding_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Fetched data from API!")
return data
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
e2d = get_embedding_data(url)
# e2d, _, _, _, _ = get_embedding_data(url)
ctr = -1
num_chunks = len(gal_feeds)
ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors, all_pubdates, all_old = [], [], [], [], [], [], []
for nc in range(num_chunks):
for i in range(len(gal_feeds[nc].entries)):
text = gal_feeds[nc].entries[i].summary
text = text.replace('\n', ' ')
text = text.replace('\\', '')
all_text.append(text)
all_titles.append(gal_feeds[nc].entries[i].title)
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
all_links.append(gal_feeds[nc].entries[i].links[1].href)
all_authors.append(gal_feeds[nc].entries[i].authors)
temp = gal_feeds[nc].entries[i].published
datetime_object = datetime.datetime.strptime(temp[0:10]+' '+temp[11:-1], '%Y-%m-%d %H:%M:%S')
all_pubdates.append(datetime_object)
all_old.append((datetime.datetime.now() - datetime_object).days)
def make_author_plot(inputstr, print_summary = False):
authr_list = inputstr.split(', ')
author_flag = np.zeros((len(all_authors),))
ctr = 0
pts = []
for i in range(len(all_authors)):
for j in range(len(all_authors[i])):
for k in range(len(authr_list)):
authr = authr_list[k]
if authr.lower() in all_authors[i][j]['name'].lower():
author_flag[i] = 1
ctr = ctr+1
printstr = str(ctr)+'. [age= %.1f yr, x: %.1f, y: %.1f]' %(all_old[i]/365,e2d[i,0], e2d[i,1])+' name: '+all_authors[i][j]['name']
pts.append(printstr)
pts.append('Paper title: ' + all_titles[i])
else:
continue
print(np.sum(author_flag))
author_flag = author_flag.astype(bool)
fig = plt.figure(figsize=(10.8,9.))
plt.scatter(e2d[0:,0], e2d[0:,1],s=1,color='k',alpha=0.3)
plt.scatter(e2d[0:,0][author_flag], e2d[0:,1][author_flag],
s=100,c=np.array(all_old)[author_flag]/365,alpha=1.0, cmap='coolwarm')
clbr = plt.colorbar(); clbr.set_label('lookback time [years]',fontsize=18)
tempx = plt.xlim(); tempy = plt.ylim()
plt.title('Author: '+authr,fontsize=18,fontweight='bold')
st.pyplot(fig)
if print_summary == True:
st.markdown('---')
for i in range(len(pts)):
st.markdown(pts[i])
return
st.title('Author search')
st.markdown('[Includes papers up to: `'+dateval+'`]')
st.markdown('Trace the location and trajectory of a researcher in the astro-ph.GA manifold.')
st.markdown('The current text matching is exact (not case sensitive), so look at the printed summaries below to refine your input string. If you have multiple aliases by which you publish, separate the inputs with a comma followed by a space like in the example below.')
query = st.text_input('Author name:',
value="Kartheik Iyer, Kartheik G. Iyer, K. G. Iyer")
make_author_plot(query, print_summary=True)
|