Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,726 Bytes
b0f9fc7 9c7a7db b0f9fc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
import datetime
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np
import matplotlib.pyplot as plt
import requests
import json
from scipy import ndimage
from langchain_openai import AzureOpenAIEmbeddings
from langchain.llms import OpenAI
from langchain_openai import AzureChatOpenAI
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
embeddings = AzureOpenAIEmbeddings(
deployment="embedding",
model="text-embedding-ada-002",
azure_endpoint=st.secrets["endpoint1"],
)
llm = AzureChatOpenAI(
deployment_name="gpt4_small",
openai_api_version="2023-12-01-preview",
azure_endpoint=st.secrets["endpoint2"],
openai_api_key=st.secrets["key2"],
openai_api_type="azure",
temperature=0.
)
@st.cache_data
def get_feeds_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Loaded data")
return data
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
dateval = "16-Jun-2024"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)
@st.cache_data
def get_embedding_data(url):
# data = cp.load(urlopen(url))
with open(url, "rb") as fp:
data = pickle.load(fp)
st.sidebar.success("Fetched data from API!")
return data
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
e2d = get_embedding_data(url)
# e2d, _, _, _, _ = get_embedding_data(url)
ctr = -1
num_chunks = len(gal_feeds)
ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors, all_pubdates, all_old = [], [], [], [], [], [], []
for nc in range(num_chunks):
for i in range(len(gal_feeds[nc].entries)):
text = gal_feeds[nc].entries[i].summary
text = text.replace('\n', ' ')
text = text.replace('\\', '')
all_text.append(text)
all_titles.append(gal_feeds[nc].entries[i].title)
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
all_links.append(gal_feeds[nc].entries[i].links[1].href)
all_authors.append(gal_feeds[nc].entries[i].authors)
temp = gal_feeds[nc].entries[i].published
datetime_object = datetime.datetime.strptime(temp[0:10]+' '+temp[11:-1], '%Y-%m-%d %H:%M:%S')
all_pubdates.append(datetime_object)
all_old.append((datetime.datetime.now() - datetime_object).days)
def make_time_excess_plot(midage = 0, tolage = 1, onlyolder = False):
bw = 0.05
sigma = 4.0
mask = (np.abs(np.array(all_old) - midage*365) < tolage*365)
if onlyolder == True:
mask2 = (np.array(all_old) > midage*365 + tolage*365/2)
a = np.histogram2d(e2d[0:,0][mask2], e2d[0:,1][mask2], bins=(np.arange(0,17,bw)), density=True)
else:
a = np.histogram2d(e2d[0:,0], e2d[0:,1], bins=(np.arange(0,17,bw)), density=True)
b = np.histogram2d(e2d[0:,0][mask], e2d[0:,1][mask], bins=(np.arange(0,17,bw)), density=True)
temp = b[0].T - a[0].T
temp = ndimage.gaussian_filter(temp, sigma, mode='nearest')
vscale = (np.nanpercentile(temp,99.5) - np.nanpercentile(temp,0.5))/2
fig, ax = plt.subplots(1,1,figsize=(11,9))
plt.pcolor(a[1][0:-1] + (a[1][1]-a[1][0])/2, a[2][0:-1] + (a[2][1]-a[2][0])/2,
temp,cmap='bwr',
vmin=-vscale,vmax=vscale); plt.colorbar()
# plt.scatter(e2d[0:,0], e2d[0:,1],s=2,color='k',alpha=0.1)
plt.title('excess research over the last %.1f yrs centered at %.1f yrs' %(tolage, midage))
plt.axis([0,14,1,15])
plt.axis('off')
st.pyplot(fig)
return
st.title('Research hotspots')
st.markdown('[Includes papers up to: `'+dateval+'`]')
midage = st.slider('Age', 0., 10., 0.)
tolage = st.slider('Period width', 0., 10., 1.)
st.markdown('Compare the research in a given time period to the full manifold.')
make_time_excess_plot(midage, tolage, onlyolder = False)
st.markdown('Compare the research in a given time period to research older than that.')
make_time_excess_plot(midage, tolage, onlyolder = True)
|