File size: 25,697 Bytes
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e51e3
036767e
 
 
 
 
 
 
 
 
 
 
04b8b57
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e51e3
 
 
 
 
 
036767e
 
 
 
 
 
 
 
 
 
 
 
 
18e51e3
 
 
 
 
 
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e51e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e51e3
 
 
 
 
 
 
 
 
 
 
 
 
b95eb79
 
 
18e51e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95eb79
036767e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import gradio as gr
import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter

import yaml, json, requests, sys, os, time
import urllib.parse
import concurrent.futures

from langchain import hub
from langchain_openai import ChatOpenAI as openai_llm
from langchain_openai import OpenAIEmbeddings
from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import TextLoader
from langchain.agents import create_react_agent, Tool, AgentExecutor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain.callbacks import FileCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.schema import Document

import instructor
from pydantic import BaseModel, Field
from typing import List, Literal

from nltk.corpus import stopwords
import nltk
from openai import OpenAI, moderations
# import anthropic
import cohere
import faiss
import matplotlib.pyplot as plt
import spacy
from string import punctuation
import pytextrank
from prompts import *

openai_key = os.environ['openai_key']
cohere_key = os.environ['cohere_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']

def load_nlp():
    nlp = spacy.load("en_core_web_sm")
    nlp.add_pipe("textrank")
    try:
        stopwords.words('english')
    except:
        nltk.download('stopwords')
        stopwords.words('english')
    return nlp

gen_llm = openai_llm(temperature=0, model_name='gpt-4o-mini', openai_api_key = openai_key)
consensus_client = instructor.patch(OpenAI(api_key=openai_key))
embed_client = OpenAI(api_key = openai_key)
embed_model = "text-embedding-3-small"
embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key)
nlp = load_nlp()

def check_mod(query):
    mod_report = moderations.create(input=query)
    for i in mod_report.results[0].categories:
        if i[1] == True:
            return True
    return False

def get_keywords(text, nlp=nlp):
    result = []
    pos_tag = ['PROPN', 'ADJ', 'NOUN']
    doc = nlp(text.lower())
    for token in doc:
        if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
            continue
        if(token.pos_ in pos_tag):
            result.append(token.text)
    return result

def load_arxiv_corpus():
    # arxiv_corpus = load_from_disk('data/')
    # arxiv_corpus.load_faiss_index('embed', 'data/astrophindex.faiss')

    # keeping it up to date with the dataset
    arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data', split='train')
    arxiv_corpus.add_faiss_index(column='embed')
    print('loading arxiv corpus from disk')
    return arxiv_corpus

class RetrievalSystem():

    def __init__(self):

        self.dataset = arxiv_corpus
        self.client = OpenAI(api_key = openai_key)
        self.embed_model = "text-embedding-3-small"
        self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
        self.hyde_client = openai_llm(temperature=0.5,model_name='gpt-4o-mini', openai_api_key = openai_key)
        self.cohere_client = cohere.Client(cohere_key)

    def make_embedding(self, text):
        str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
        return str_embed

    def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
        return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]

    def get_query_embedding(self, query):
        return self.make_embedding(query)

    def calc_faiss(self, query_embedding, top_k = 100):
        # xq = query_embedding.reshape(-1,1).T.astype('float32')
        # D, I = self.index.search(xq, top_k)
        # return I[0], D[0]
        tmp = self.dataset.search('embed', query_embedding, k=top_k)
        return [tmp.indices, tmp.scores, self.dataset[tmp.indices]]

    def rank_and_filter(self, query, query_embedding, top_k = 10, top_k_internal = 1000, return_scores=False):

        if 'Keywords' in self.toggles:
            self.weight_keywords = True
        else:
            self.weight_keywords = False

        if 'Time' in self.toggles:
            self.weight_date = True
        else:
            self.weight_date = False

        if 'Citations' in self.toggles:
            self.weight_citation = True
        else:
            self.weight_citation = False

        topk_indices, similarities, small_corpus = self.calc_faiss(np.array(query_embedding), top_k = top_k_internal)
        similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better)

        if self.weight_keywords == True:

            query_kws = get_keywords(query)
            input_kws = self.query_input_keywords
            query_kws = query_kws + input_kws
            self.query_kws = query_kws
            sub_kws = [small_corpus['keywords'][i] for i in range(top_k_internal)]
            kw_weight = np.zeros((len(topk_indices),)) + 0.1

            for k in query_kws:
                for i in (range(len(topk_indices))):
                    for j in range(len(sub_kws[i])):
                        if k.lower() in sub_kws[i][j].lower():
                            kw_weight[i] = kw_weight[i] + 0.1
                            # print(i, k, sub_kws[i][j])

            # kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36)
            kw_weight = kw_weight / np.amax(kw_weight)
        else:
            kw_weight = np.ones((len(topk_indices),))

        if self.weight_date == True:
            sub_dates = [small_corpus['date'][i] for i in range(top_k_internal)]
            date = datetime.now().date()
            date_diff = np.array([((date - i).days / 365.) for i in sub_dates])
            # age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5
            age_weight = (1 + np.exp(date_diff/0.7))**(-1)
            age_weight = age_weight / np.amax(age_weight)
        else:
            age_weight = np.ones((len(topk_indices),))

        if self.weight_citation == True:
            # st.write('weighting by citations')
            sub_cites = np.array([small_corpus['cites'][i] for i in range(top_k_internal)])
            temp = sub_cites.copy()
            temp[sub_cites > 300] = 300.
            cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.)
            cite_weight = cite_weight / np.amax(cite_weight)
        else:
            cite_weight = np.ones((len(topk_indices),))

        similarities = similarities * (kw_weight) * (age_weight) * (cite_weight)

        filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
        top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]

        top_scores = [doc[1] for doc in top_results]
        top_indices = [doc[0] for doc in top_results]
        small_df = self.dataset[top_indices]

        if return_scores:
            return {doc[0]: doc[1] for doc in top_results}, small_df

        # Only keep the document IDs
        top_results = [doc[0] for doc in top_results]
        return top_results, small_df

    def generate_doc(self, query: str):
        prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper
                            that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
                            Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)

        messages = [("system",prompt,),("human", query),]
        return self.hyde_client.invoke(messages).content

    def generate_docs(self, query: str):
        docs = []
        for i in range(self.generate_n):
            docs.append(self.generate_doc(query))
        return docs

    def embed_docs(self, docs: List[str]):
        return self.embed_batch(docs)

    def retrieve(self, query, top_k, return_scores = False,
                 embed_query=True, max_doclen=250,
                 generate_n=1, temperature=0.5,
                 rerank_top_k = 250):

        if max_doclen * generate_n > 8191:
            raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")

        query_embedding = self.get_query_embedding(query)

        if self.hyde == True:
            self.max_doclen = max_doclen
            self.generate_n = generate_n
            self.hyde_client.temperature = temperature
            self.embed_query = embed_query
            docs = self.generate_docs(query)
            # st.expander('Abstract generated with hyde', expanded=False).write(docs)
            doc_embeddings = self.embed_docs(docs)
            if self.embed_query:
                query_emb = self.embed_docs([query])[0]
                doc_embeddings.append(query_emb)
            query_embedding = np.mean(np.array(doc_embeddings), axis = 0)

        if self.rerank == True:
            top_results, small_df = self.rank_and_filter(query,
                                           query_embedding,
                                           rerank_top_k,
                                           return_scores = False)
            # try:
            docs_for_rerank = [small_df['abstract'][i] for i in range(rerank_top_k)]
            if len(docs_for_rerank) == 0:
                return []
            reranked_results = self.cohere_client.rerank(
                query=query,
                documents=docs_for_rerank,
                model='rerank-english-v3.0',
                top_n=top_k
            )
            final_results = []
            for result in reranked_results.results:
                doc_id = top_results[result.index]
                doc_text = docs_for_rerank[result.index]
                score = float(result.relevance_score)
                final_results.append([doc_id, "", score])
            final_indices = [doc[0] for doc in final_results]
            if return_scores:
                return {result[0]: result[2] for result in final_results}, self.dataset[final_indices]
            return [doc[0] for doc in final_results], self.dataset[final_indices]
            # except:
                # print('heavy load, please wait 10s and try again.')
        else:
            top_results, small_df = self.rank_and_filter(query,
                                               query_embedding,
                                               top_k,
                                               return_scores = return_scores)

        return top_results, small_df

    def return_formatted_df(self, top_results, small_df):

        df = pd.DataFrame(small_df)
        df = df.drop(columns=['umap_x','umap_y','cite_bibcodes','ref_bibcodes'])
        links = ['['+i+'](https://ui.adsabs.harvard.edu/abs/'+i+'/abstract)' for i in small_df['bibcode']]

        # st.write(top_results[0:10])
        scores = [top_results[i] for i in top_results]
        indices = [i for i in top_results]
        df.insert(1,'ADS Link',links,True)
        df.insert(2,'Relevance',scores,True)
        df.insert(3,'indices',indices,True)
        df = df[['ADS Link','Relevance','date','cites','title','authors','abstract','keywords','ads_id','indices','embed']]
        df.index += 1
        return df

arxiv_corpus = load_arxiv_corpus()
ec = RetrievalSystem()
print('loaded retrieval system')

def Library(papers_df):
    op_docs = ''
    for i in range(len(papers_df)):
        op_docs = op_docs + 'Paper %.0f:' %(i+1) + papers_df['title'][i+1]  + '\n' + papers_df['abstract'][i+1] + '\n\n'

    return op_docs

def run_rag_qa(query, papers_df, question_type):

    loaders = []

    documents = []

    for i, row in papers_df.iterrows():
        content = f"Paper {i+1}: {row['title']}\n{row['abstract']}\n\n"
        metadata = {"source": row['ads_id']}
        doc = Document(page_content=content, metadata=metadata)
        documents.append(doc)

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
    splits = text_splitter.split_documents(documents)
    vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
    retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})

    if question_type == 'Bibliometric':
        template = bibliometric_prompt
    elif question_type == 'Single-paper':
        template = single_paper_prompt
    elif question_type == 'Broad but nuanced':
        template = deep_knowledge_prompt
    else:
        template = regular_prompt
    prompt = PromptTemplate.from_template(template)

    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    rag_chain_from_docs = (
        RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
        | prompt
        | gen_llm
        | StrOutputParser()
    )

    rag_chain_with_source = RunnableParallel(
        {"context": retriever, "question": RunnablePassthrough()}
    ).assign(answer=rag_chain_from_docs)
    rag_answer = rag_chain_with_source.invoke(query, )
    vectorstore.delete_collection()

    # except:
    #     st.subheader('heavy load! please wait 10 seconds and try again.')

    return rag_answer

def guess_question_type(query: str):

    gen_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
    messages = [("system",question_categorization_prompt,),("human", query),]
    return gen_client.invoke(messages).content

def log_to_gist(strings):
    # Adding query logs to prevent and account for possible malicious use. 
    # Logs will be deleted periodically if not needed.
    github_token = os.environ['github_token']
    gist_id = os.environ['gist_id']
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    content = f"\n{timestamp}: {' '.join(strings)}\n"
    headers = {'Authorization': f'token {github_token}','Accept': 'application/vnd.github.v3+json'}
    response = requests.get(f'https://api.github.com/gists/{gist_id}', headers=headers)
    if response.status_code == 200:
        existing_content = response.json()['files']['log.txt']['content']
        content = existing_content + content
    data = {"description": "Logged Strings","public": False,"files": {"log.txt": {"content": content}}}
    headers = {'Authorization': f'token {github_token}','Accept': 'application/vnd.github.v3+json'}
    response = requests.patch(f'https://api.github.com/gists/{gist_id}', headers=headers, data=json.dumps(data)) # Update existing gist
    return

class OverallConsensusEvaluation(BaseModel):
    rewritten_statement: str = Field(
        ...,
        description="The query rewritten as a statement if it was initially a question"
    )
    consensus: Literal[
        "Strong Agreement Between Abstracts and Query",
        "Moderate Agreement Between Abstracts and Query",
        "Weak Agreement Between Abstracts and Query",
        "No Clear Agreement/Disagreement Between Abstracts and Query",
        "Weak Disagreement Between Abstracts and Query",
        "Moderate Disagreement Between Abstracts and Query",
        "Strong Disagreement Between Abstracts and Query"
    ] = Field(
        ...,
        description="The overall level of consensus between the rewritten statement and the abstracts"
    )
    explanation: str = Field(
        ...,
        description="A detailed explanation of the consensus evaluation (maximum six sentences)"
    )
    relevance_score: float = Field(
        ...,
        description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall",
        ge=0,
        le=1
    )

def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation:
    prompt = f"""
    Query: {query}
    You will be provided with {len(abstracts)} scientific abstracts. Your task is to do the following:
    1. If the provided query is a question, rewrite it as a statement. This statement does not have to be true. Output this as 'Rewritten Statement:'.
    2. Evaluate the overall consensus between the rewritten statement and the abstracts using one of the following levels:
        - Strong Agreement Between Abstracts and Query
        - Moderate Agreement Between Abstracts and Query
        - Weak Agreement Between Abstracts and Query
        - No Clear Agreement/Disagreement Between Abstracts and Query
        - Weak Disagreement Between Abstracts and Query
        - Moderate Disagreement Between Abstracts and Query
        - Strong Disagreement Between Abstracts and Query
    Output this as 'Consensus:'
    3. Provide a detailed explanation of your consensus evaluation in maximum six sentences. Output this as 'Explanation:'
    4. Assign a relevance score as a float between 0 to 1, where:
        - 1.0: Perfect match in content and quality
        - 0.8-0.9: Excellent, with minor differences
        - 0.6-0.7: Good, captures main points but misses some details
        - 0.4-0.5: Fair, partially relevant but significant gaps
        - 0.2-0.3: Poor, major inaccuracies or omissions
        - 0.0-0.1: Completely irrelevant or incorrect
    Output this as 'Relevance Score:'
    Here are the abstracts:
    {' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])}
    Provide your evaluation in the structured format described above.
    """

    response = consensus_client.chat.completions.create(
        model="gpt-4o-mini", # used to be "gpt-4",
        response_model=OverallConsensusEvaluation,
        messages=[
            {"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks.
            Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query.
            If you don't know the answer, just say that you don't know.
            Use six sentences maximum and keep the answer concise."""},
            {"role": "user", "content": prompt}
        ],
        temperature=0
    )

    return response

def calc_outlier_flag(papers_df, top_k, cutoff_adjust = 0.1):

    cut_dist = np.load('pfdr_arxiv_cutoff_distances.npy') - cutoff_adjust
    pts = np.array(papers_df['embed'].tolist())
    centroid = np.mean(pts,0)
    dists = np.sqrt(np.sum((pts-centroid)**2,1))
    outlier_flag = (dists > cut_dist[top_k-1])

    return outlier_flag

def make_embedding_plot(papers_df, top_k, consensus_answer, arxiv_corpus=arxiv_corpus):

    plt_indices = np.array(papers_df['indices'].tolist())

    xax = np.array(arxiv_corpus['umap_x'])
    yax = np.array(arxiv_corpus['umap_y'])

    outlier_flag = calc_outlier_flag(papers_df, top_k, cutoff_adjust=0.25)
    alphas = np.ones((len(plt_indices),)) * 0.9
    alphas[outlier_flag] = 0.5

    fig = plt.figure(figsize=(9*1.8,12*1.8))
    plt.scatter(xax,yax, s=1, alpha=0.01, c='k')

    clkws = np.load('kw_tags.npz')
    all_x, all_y, all_topics, repeat_flag = clkws['all_x'], clkws['all_y'], clkws['all_topics'], clkws['repeat_flag']
    for i in range(len(all_topics)):
        if repeat_flag[i] == False:
            plt.text(all_x[i], all_y[i], all_topics[i],fontsize=9,ha="center", va="center",
                         bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.3',alpha=0.81))
    plt.scatter(xax[plt_indices], yax[plt_indices], s=300*alphas**2, alpha=alphas, c='w',zorder=1000)
    plt.scatter(xax[plt_indices], yax[plt_indices], s=100*alphas**2, alpha=alphas, c='dodgerblue',zorder=1001)
    # plt.scatter(xax[plt_indices][outlier_flag], yax[plt_indices][outlier_flag], s=100, alpha=1., c='firebrick')
    plt.axis([0,20,-4.2,18])
    plt.axis('off')
    return fig

def run_pathfinder(query, top_k, extra_keywords, toggles, prompt_type, rag_type, ec=ec, progress=gr.Progress()):

    yield None, None, None, None, None

    search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...']
    gen_text_list = ['making the LLM talk to the papers...','invoking arcane rituals...','gone to library, please wait...','is there really an answer to this...']

    log_to_gist(['[mod flag: '+str(check_mod(query))+']', query])
    if check_mod(query) == False:

        input_keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
        query_keywords = get_keywords(query)
        ec.query_input_keywords = input_keywords+query_keywords
        ec.toggles = toggles
        if rag_type == "Semantic Search":
            ec.hyde = False
            ec.rerank = False
        elif rag_type == "Semantic + HyDE":
            ec.hyde = True
            ec.rerank = False
        elif rag_type == "Semantic + CoHERE":
            ec.hyde = False
            ec.rerank = True
        elif rag_type == "Semantic + HyDE + CoHERE":
            ec.hyde = True
            ec.rerank = True
    
        progress(0.2, desc=search_text_list[np.random.choice(len(search_text_list))])
        rs, small_df = ec.retrieve(query, top_k = top_k, return_scores=True)
        formatted_df = ec.return_formatted_df(rs, small_df)
        yield formatted_df, None, None, None, None
    
        progress(0.4, desc=gen_text_list[np.random.choice(len(gen_text_list))])
        rag_answer = run_rag_qa(query, formatted_df, prompt_type)
        yield formatted_df, rag_answer['answer'], None, None, None
    
        progress(0.6, desc="Generating consensus")
        consensus_answer = evaluate_overall_consensus(query, [formatted_df['abstract'][i+1] for i in range(len(formatted_df))])
        consensus = '## Consensus \n'+consensus_answer.consensus + '\n\n'+consensus_answer.explanation + '\n\n > Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score
        yield formatted_df, rag_answer['answer'], consensus, None, None
    
        progress(0.8, desc="Analyzing question type")
        question_type_gen = guess_question_type(query)
        if '<categorization>' in question_type_gen:
            question_type_gen = question_type_gen.split('<categorization>')[1]
        if '</categorization>' in question_type_gen:
            question_type_gen = question_type_gen.split('</categorization>')[0]
        question_type_gen = question_type_gen.replace('\n','  \n')
        qn_type = question_type_gen
        yield formatted_df, rag_answer['answer'], consensus, qn_type, None
    
        progress(1.0, desc="Visualizing embeddings")
        fig = make_embedding_plot(formatted_df, top_k, consensus_answer)
    
        yield formatted_df, rag_answer['answer'], consensus, qn_type, fig

def create_interface():
    custom_css = """
    #custom-slider-* {
        background-color: #ffffff;
    }
    """

    with gr.Blocks(css=custom_css) as demo:

        with gr.Tabs():
            # with gr.Tab("What is Pathfinder?"):
            #     gr.Markdown(pathfinder_text)
            with gr.Tab("pathfinder"):
                with gr.Accordion("What is Pathfinder? / How do I use it?", open=False):
                    gr.Markdown(pathfinder_text)

                with gr.Row():
                    query = gr.Textbox(label="Ask me anything")
                with gr.Row():
                    with gr.Column(scale=1, min_width=300):
                        top_k = gr.Slider(1, 30, step=1, value=10, label="top-k", info="Number of papers to retrieve")
                        keywords = gr.Textbox(label="Optional Keywords (comma-separated)",value="")
                        toggles = gr.CheckboxGroup(["Keywords", "Time", "Citations"], label="Weight by", info="weighting retrieved papers",value=['Keywords'])
                        prompt_type = gr.Radio(choices=["Single-paper", "Multi-paper", "Bibliometric", "Broad but nuanced"], label="Prompt Specialization", value='Multi-paper')
                        rag_type = gr.Radio(choices=["Semantic Search", "Semantic + HyDE", "Semantic + CoHERE", "Semantic + HyDE + CoHERE"], label="RAG Method",value='Semantic + HyDE + CoHERE')
                    with gr.Column(scale=2, min_width=300):
                        img1 = gr.Image("local_files/pathfinder_logo.png")
                        btn = gr.Button("Run pfdr!")
                        # search_results_state = gr.State([])
                        ret_papers = gr.Dataframe(label='top-k retrieved papers', datatype='markdown')
                        search_results_state = gr.Markdown(label='Generated Answer')
                        qntype = gr.Markdown(label='Question type suggestion')
                        conc = gr.Markdown(label='Consensus')
                        plot = gr.Plot(label='top-k in embedding space')

                        inputs = [query, top_k, keywords, toggles, prompt_type, rag_type]
                        outputs = [ret_papers, search_results_state, qntype, conc, plot]
                        btn.click(fn=run_pathfinder, inputs=inputs, outputs=outputs)

    return demo


if __name__ == "__main__":

    pathfinder = create_interface()
    pathfinder.launch()