Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 25,697 Bytes
036767e 18e51e3 036767e 04b8b57 036767e 18e51e3 036767e 18e51e3 036767e 18e51e3 036767e 18e51e3 b95eb79 18e51e3 036767e b95eb79 036767e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import gradio as gr
import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter
import yaml, json, requests, sys, os, time
import urllib.parse
import concurrent.futures
from langchain import hub
from langchain_openai import ChatOpenAI as openai_llm
from langchain_openai import OpenAIEmbeddings
from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel
from langchain_core.prompts import PromptTemplate
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import TextLoader
from langchain.agents import create_react_agent, Tool, AgentExecutor
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain.callbacks import FileCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.schema import Document
import instructor
from pydantic import BaseModel, Field
from typing import List, Literal
from nltk.corpus import stopwords
import nltk
from openai import OpenAI, moderations
# import anthropic
import cohere
import faiss
import matplotlib.pyplot as plt
import spacy
from string import punctuation
import pytextrank
from prompts import *
openai_key = os.environ['openai_key']
cohere_key = os.environ['cohere_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
def load_nlp():
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")
try:
stopwords.words('english')
except:
nltk.download('stopwords')
stopwords.words('english')
return nlp
gen_llm = openai_llm(temperature=0, model_name='gpt-4o-mini', openai_api_key = openai_key)
consensus_client = instructor.patch(OpenAI(api_key=openai_key))
embed_client = OpenAI(api_key = openai_key)
embed_model = "text-embedding-3-small"
embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key)
nlp = load_nlp()
def check_mod(query):
mod_report = moderations.create(input=query)
for i in mod_report.results[0].categories:
if i[1] == True:
return True
return False
def get_keywords(text, nlp=nlp):
result = []
pos_tag = ['PROPN', 'ADJ', 'NOUN']
doc = nlp(text.lower())
for token in doc:
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
continue
if(token.pos_ in pos_tag):
result.append(token.text)
return result
def load_arxiv_corpus():
# arxiv_corpus = load_from_disk('data/')
# arxiv_corpus.load_faiss_index('embed', 'data/astrophindex.faiss')
# keeping it up to date with the dataset
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data', split='train')
arxiv_corpus.add_faiss_index(column='embed')
print('loading arxiv corpus from disk')
return arxiv_corpus
class RetrievalSystem():
def __init__(self):
self.dataset = arxiv_corpus
self.client = OpenAI(api_key = openai_key)
self.embed_model = "text-embedding-3-small"
self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
self.hyde_client = openai_llm(temperature=0.5,model_name='gpt-4o-mini', openai_api_key = openai_key)
self.cohere_client = cohere.Client(cohere_key)
def make_embedding(self, text):
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
return str_embed
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
def get_query_embedding(self, query):
return self.make_embedding(query)
def calc_faiss(self, query_embedding, top_k = 100):
# xq = query_embedding.reshape(-1,1).T.astype('float32')
# D, I = self.index.search(xq, top_k)
# return I[0], D[0]
tmp = self.dataset.search('embed', query_embedding, k=top_k)
return [tmp.indices, tmp.scores, self.dataset[tmp.indices]]
def rank_and_filter(self, query, query_embedding, top_k = 10, top_k_internal = 1000, return_scores=False):
if 'Keywords' in self.toggles:
self.weight_keywords = True
else:
self.weight_keywords = False
if 'Time' in self.toggles:
self.weight_date = True
else:
self.weight_date = False
if 'Citations' in self.toggles:
self.weight_citation = True
else:
self.weight_citation = False
topk_indices, similarities, small_corpus = self.calc_faiss(np.array(query_embedding), top_k = top_k_internal)
similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better)
if self.weight_keywords == True:
query_kws = get_keywords(query)
input_kws = self.query_input_keywords
query_kws = query_kws + input_kws
self.query_kws = query_kws
sub_kws = [small_corpus['keywords'][i] for i in range(top_k_internal)]
kw_weight = np.zeros((len(topk_indices),)) + 0.1
for k in query_kws:
for i in (range(len(topk_indices))):
for j in range(len(sub_kws[i])):
if k.lower() in sub_kws[i][j].lower():
kw_weight[i] = kw_weight[i] + 0.1
# print(i, k, sub_kws[i][j])
# kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36)
kw_weight = kw_weight / np.amax(kw_weight)
else:
kw_weight = np.ones((len(topk_indices),))
if self.weight_date == True:
sub_dates = [small_corpus['date'][i] for i in range(top_k_internal)]
date = datetime.now().date()
date_diff = np.array([((date - i).days / 365.) for i in sub_dates])
# age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5
age_weight = (1 + np.exp(date_diff/0.7))**(-1)
age_weight = age_weight / np.amax(age_weight)
else:
age_weight = np.ones((len(topk_indices),))
if self.weight_citation == True:
# st.write('weighting by citations')
sub_cites = np.array([small_corpus['cites'][i] for i in range(top_k_internal)])
temp = sub_cites.copy()
temp[sub_cites > 300] = 300.
cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.)
cite_weight = cite_weight / np.amax(cite_weight)
else:
cite_weight = np.ones((len(topk_indices),))
similarities = similarities * (kw_weight) * (age_weight) * (cite_weight)
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]
top_scores = [doc[1] for doc in top_results]
top_indices = [doc[0] for doc in top_results]
small_df = self.dataset[top_indices]
if return_scores:
return {doc[0]: doc[1] for doc in top_results}, small_df
# Only keep the document IDs
top_results = [doc[0] for doc in top_results]
return top_results, small_df
def generate_doc(self, query: str):
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
messages = [("system",prompt,),("human", query),]
return self.hyde_client.invoke(messages).content
def generate_docs(self, query: str):
docs = []
for i in range(self.generate_n):
docs.append(self.generate_doc(query))
return docs
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
def retrieve(self, query, top_k, return_scores = False,
embed_query=True, max_doclen=250,
generate_n=1, temperature=0.5,
rerank_top_k = 250):
if max_doclen * generate_n > 8191:
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
query_embedding = self.get_query_embedding(query)
if self.hyde == True:
self.max_doclen = max_doclen
self.generate_n = generate_n
self.hyde_client.temperature = temperature
self.embed_query = embed_query
docs = self.generate_docs(query)
# st.expander('Abstract generated with hyde', expanded=False).write(docs)
doc_embeddings = self.embed_docs(docs)
if self.embed_query:
query_emb = self.embed_docs([query])[0]
doc_embeddings.append(query_emb)
query_embedding = np.mean(np.array(doc_embeddings), axis = 0)
if self.rerank == True:
top_results, small_df = self.rank_and_filter(query,
query_embedding,
rerank_top_k,
return_scores = False)
# try:
docs_for_rerank = [small_df['abstract'][i] for i in range(rerank_top_k)]
if len(docs_for_rerank) == 0:
return []
reranked_results = self.cohere_client.rerank(
query=query,
documents=docs_for_rerank,
model='rerank-english-v3.0',
top_n=top_k
)
final_results = []
for result in reranked_results.results:
doc_id = top_results[result.index]
doc_text = docs_for_rerank[result.index]
score = float(result.relevance_score)
final_results.append([doc_id, "", score])
final_indices = [doc[0] for doc in final_results]
if return_scores:
return {result[0]: result[2] for result in final_results}, self.dataset[final_indices]
return [doc[0] for doc in final_results], self.dataset[final_indices]
# except:
# print('heavy load, please wait 10s and try again.')
else:
top_results, small_df = self.rank_and_filter(query,
query_embedding,
top_k,
return_scores = return_scores)
return top_results, small_df
def return_formatted_df(self, top_results, small_df):
df = pd.DataFrame(small_df)
df = df.drop(columns=['umap_x','umap_y','cite_bibcodes','ref_bibcodes'])
links = ['['+i+'](https://ui.adsabs.harvard.edu/abs/'+i+'/abstract)' for i in small_df['bibcode']]
# st.write(top_results[0:10])
scores = [top_results[i] for i in top_results]
indices = [i for i in top_results]
df.insert(1,'ADS Link',links,True)
df.insert(2,'Relevance',scores,True)
df.insert(3,'indices',indices,True)
df = df[['ADS Link','Relevance','date','cites','title','authors','abstract','keywords','ads_id','indices','embed']]
df.index += 1
return df
arxiv_corpus = load_arxiv_corpus()
ec = RetrievalSystem()
print('loaded retrieval system')
def Library(papers_df):
op_docs = ''
for i in range(len(papers_df)):
op_docs = op_docs + 'Paper %.0f:' %(i+1) + papers_df['title'][i+1] + '\n' + papers_df['abstract'][i+1] + '\n\n'
return op_docs
def run_rag_qa(query, papers_df, question_type):
loaders = []
documents = []
for i, row in papers_df.iterrows():
content = f"Paper {i+1}: {row['title']}\n{row['abstract']}\n\n"
metadata = {"source": row['ads_id']}
doc = Document(page_content=content, metadata=metadata)
documents.append(doc)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
splits = text_splitter.split_documents(documents)
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
if question_type == 'Bibliometric':
template = bibliometric_prompt
elif question_type == 'Single-paper':
template = single_paper_prompt
elif question_type == 'Broad but nuanced':
template = deep_knowledge_prompt
else:
template = regular_prompt
prompt = PromptTemplate.from_template(template)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| prompt
| gen_llm
| StrOutputParser()
)
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
rag_answer = rag_chain_with_source.invoke(query, )
vectorstore.delete_collection()
# except:
# st.subheader('heavy load! please wait 10 seconds and try again.')
return rag_answer
def guess_question_type(query: str):
gen_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
messages = [("system",question_categorization_prompt,),("human", query),]
return gen_client.invoke(messages).content
def log_to_gist(strings):
# Adding query logs to prevent and account for possible malicious use.
# Logs will be deleted periodically if not needed.
github_token = os.environ['github_token']
gist_id = os.environ['gist_id']
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
content = f"\n{timestamp}: {' '.join(strings)}\n"
headers = {'Authorization': f'token {github_token}','Accept': 'application/vnd.github.v3+json'}
response = requests.get(f'https://api.github.com/gists/{gist_id}', headers=headers)
if response.status_code == 200:
existing_content = response.json()['files']['log.txt']['content']
content = existing_content + content
data = {"description": "Logged Strings","public": False,"files": {"log.txt": {"content": content}}}
headers = {'Authorization': f'token {github_token}','Accept': 'application/vnd.github.v3+json'}
response = requests.patch(f'https://api.github.com/gists/{gist_id}', headers=headers, data=json.dumps(data)) # Update existing gist
return
class OverallConsensusEvaluation(BaseModel):
rewritten_statement: str = Field(
...,
description="The query rewritten as a statement if it was initially a question"
)
consensus: Literal[
"Strong Agreement Between Abstracts and Query",
"Moderate Agreement Between Abstracts and Query",
"Weak Agreement Between Abstracts and Query",
"No Clear Agreement/Disagreement Between Abstracts and Query",
"Weak Disagreement Between Abstracts and Query",
"Moderate Disagreement Between Abstracts and Query",
"Strong Disagreement Between Abstracts and Query"
] = Field(
...,
description="The overall level of consensus between the rewritten statement and the abstracts"
)
explanation: str = Field(
...,
description="A detailed explanation of the consensus evaluation (maximum six sentences)"
)
relevance_score: float = Field(
...,
description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall",
ge=0,
le=1
)
def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation:
prompt = f"""
Query: {query}
You will be provided with {len(abstracts)} scientific abstracts. Your task is to do the following:
1. If the provided query is a question, rewrite it as a statement. This statement does not have to be true. Output this as 'Rewritten Statement:'.
2. Evaluate the overall consensus between the rewritten statement and the abstracts using one of the following levels:
- Strong Agreement Between Abstracts and Query
- Moderate Agreement Between Abstracts and Query
- Weak Agreement Between Abstracts and Query
- No Clear Agreement/Disagreement Between Abstracts and Query
- Weak Disagreement Between Abstracts and Query
- Moderate Disagreement Between Abstracts and Query
- Strong Disagreement Between Abstracts and Query
Output this as 'Consensus:'
3. Provide a detailed explanation of your consensus evaluation in maximum six sentences. Output this as 'Explanation:'
4. Assign a relevance score as a float between 0 to 1, where:
- 1.0: Perfect match in content and quality
- 0.8-0.9: Excellent, with minor differences
- 0.6-0.7: Good, captures main points but misses some details
- 0.4-0.5: Fair, partially relevant but significant gaps
- 0.2-0.3: Poor, major inaccuracies or omissions
- 0.0-0.1: Completely irrelevant or incorrect
Output this as 'Relevance Score:'
Here are the abstracts:
{' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])}
Provide your evaluation in the structured format described above.
"""
response = consensus_client.chat.completions.create(
model="gpt-4o-mini", # used to be "gpt-4",
response_model=OverallConsensusEvaluation,
messages=[
{"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks.
Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query.
If you don't know the answer, just say that you don't know.
Use six sentences maximum and keep the answer concise."""},
{"role": "user", "content": prompt}
],
temperature=0
)
return response
def calc_outlier_flag(papers_df, top_k, cutoff_adjust = 0.1):
cut_dist = np.load('pfdr_arxiv_cutoff_distances.npy') - cutoff_adjust
pts = np.array(papers_df['embed'].tolist())
centroid = np.mean(pts,0)
dists = np.sqrt(np.sum((pts-centroid)**2,1))
outlier_flag = (dists > cut_dist[top_k-1])
return outlier_flag
def make_embedding_plot(papers_df, top_k, consensus_answer, arxiv_corpus=arxiv_corpus):
plt_indices = np.array(papers_df['indices'].tolist())
xax = np.array(arxiv_corpus['umap_x'])
yax = np.array(arxiv_corpus['umap_y'])
outlier_flag = calc_outlier_flag(papers_df, top_k, cutoff_adjust=0.25)
alphas = np.ones((len(plt_indices),)) * 0.9
alphas[outlier_flag] = 0.5
fig = plt.figure(figsize=(9*1.8,12*1.8))
plt.scatter(xax,yax, s=1, alpha=0.01, c='k')
clkws = np.load('kw_tags.npz')
all_x, all_y, all_topics, repeat_flag = clkws['all_x'], clkws['all_y'], clkws['all_topics'], clkws['repeat_flag']
for i in range(len(all_topics)):
if repeat_flag[i] == False:
plt.text(all_x[i], all_y[i], all_topics[i],fontsize=9,ha="center", va="center",
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.3',alpha=0.81))
plt.scatter(xax[plt_indices], yax[plt_indices], s=300*alphas**2, alpha=alphas, c='w',zorder=1000)
plt.scatter(xax[plt_indices], yax[plt_indices], s=100*alphas**2, alpha=alphas, c='dodgerblue',zorder=1001)
# plt.scatter(xax[plt_indices][outlier_flag], yax[plt_indices][outlier_flag], s=100, alpha=1., c='firebrick')
plt.axis([0,20,-4.2,18])
plt.axis('off')
return fig
def run_pathfinder(query, top_k, extra_keywords, toggles, prompt_type, rag_type, ec=ec, progress=gr.Progress()):
yield None, None, None, None, None
search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...']
gen_text_list = ['making the LLM talk to the papers...','invoking arcane rituals...','gone to library, please wait...','is there really an answer to this...']
log_to_gist(['[mod flag: '+str(check_mod(query))+']', query])
if check_mod(query) == False:
input_keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
query_keywords = get_keywords(query)
ec.query_input_keywords = input_keywords+query_keywords
ec.toggles = toggles
if rag_type == "Semantic Search":
ec.hyde = False
ec.rerank = False
elif rag_type == "Semantic + HyDE":
ec.hyde = True
ec.rerank = False
elif rag_type == "Semantic + CoHERE":
ec.hyde = False
ec.rerank = True
elif rag_type == "Semantic + HyDE + CoHERE":
ec.hyde = True
ec.rerank = True
progress(0.2, desc=search_text_list[np.random.choice(len(search_text_list))])
rs, small_df = ec.retrieve(query, top_k = top_k, return_scores=True)
formatted_df = ec.return_formatted_df(rs, small_df)
yield formatted_df, None, None, None, None
progress(0.4, desc=gen_text_list[np.random.choice(len(gen_text_list))])
rag_answer = run_rag_qa(query, formatted_df, prompt_type)
yield formatted_df, rag_answer['answer'], None, None, None
progress(0.6, desc="Generating consensus")
consensus_answer = evaluate_overall_consensus(query, [formatted_df['abstract'][i+1] for i in range(len(formatted_df))])
consensus = '## Consensus \n'+consensus_answer.consensus + '\n\n'+consensus_answer.explanation + '\n\n > Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score
yield formatted_df, rag_answer['answer'], consensus, None, None
progress(0.8, desc="Analyzing question type")
question_type_gen = guess_question_type(query)
if '<categorization>' in question_type_gen:
question_type_gen = question_type_gen.split('<categorization>')[1]
if '</categorization>' in question_type_gen:
question_type_gen = question_type_gen.split('</categorization>')[0]
question_type_gen = question_type_gen.replace('\n',' \n')
qn_type = question_type_gen
yield formatted_df, rag_answer['answer'], consensus, qn_type, None
progress(1.0, desc="Visualizing embeddings")
fig = make_embedding_plot(formatted_df, top_k, consensus_answer)
yield formatted_df, rag_answer['answer'], consensus, qn_type, fig
def create_interface():
custom_css = """
#custom-slider-* {
background-color: #ffffff;
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Tabs():
# with gr.Tab("What is Pathfinder?"):
# gr.Markdown(pathfinder_text)
with gr.Tab("pathfinder"):
with gr.Accordion("What is Pathfinder? / How do I use it?", open=False):
gr.Markdown(pathfinder_text)
with gr.Row():
query = gr.Textbox(label="Ask me anything")
with gr.Row():
with gr.Column(scale=1, min_width=300):
top_k = gr.Slider(1, 30, step=1, value=10, label="top-k", info="Number of papers to retrieve")
keywords = gr.Textbox(label="Optional Keywords (comma-separated)",value="")
toggles = gr.CheckboxGroup(["Keywords", "Time", "Citations"], label="Weight by", info="weighting retrieved papers",value=['Keywords'])
prompt_type = gr.Radio(choices=["Single-paper", "Multi-paper", "Bibliometric", "Broad but nuanced"], label="Prompt Specialization", value='Multi-paper')
rag_type = gr.Radio(choices=["Semantic Search", "Semantic + HyDE", "Semantic + CoHERE", "Semantic + HyDE + CoHERE"], label="RAG Method",value='Semantic + HyDE + CoHERE')
with gr.Column(scale=2, min_width=300):
img1 = gr.Image("local_files/pathfinder_logo.png")
btn = gr.Button("Run pfdr!")
# search_results_state = gr.State([])
ret_papers = gr.Dataframe(label='top-k retrieved papers', datatype='markdown')
search_results_state = gr.Markdown(label='Generated Answer')
qntype = gr.Markdown(label='Question type suggestion')
conc = gr.Markdown(label='Consensus')
plot = gr.Plot(label='top-k in embedding space')
inputs = [query, top_k, keywords, toggles, prompt_type, rag_type]
outputs = [ret_papers, search_results_state, qntype, conc, plot]
btn.click(fn=run_pathfinder, inputs=inputs, outputs=outputs)
return demo
if __name__ == "__main__":
pathfinder = create_interface()
pathfinder.launch()
|