Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import numpy as np | |
from abc import ABC, abstractmethod | |
from typing import List, Dict, Any, Tuple | |
from collections import defaultdict | |
import pandas as pd | |
from datetime import datetime, date | |
from datasets import load_dataset, load_from_disk | |
from collections import Counter | |
import yaml, json, requests, sys, os, time | |
import urllib.parse | |
import concurrent.futures | |
from langchain import hub | |
from langchain_openai import ChatOpenAI as openai_llm | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.callbacks import StreamlitCallbackHandler | |
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import TextLoader | |
from langchain.agents import create_react_agent, Tool, AgentExecutor | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain.callbacks import FileCallbackHandler | |
from langchain.callbacks.manager import CallbackManager | |
from langchain.schema import Document | |
import instructor | |
from pydantic import BaseModel, Field | |
from typing import List, Literal | |
from nltk.corpus import stopwords | |
import nltk | |
from openai import OpenAI | |
# import anthropic | |
import cohere | |
import faiss | |
import matplotlib.pyplot as plt | |
import spacy | |
from string import punctuation | |
import pytextrank | |
from prompts import * | |
openai_key = os.environ['openai_key'] | |
cohere_key = os.environ['cohere_key'] | |
def load_nlp(): | |
nlp = spacy.load("en_core_web_sm") | |
nlp.add_pipe("textrank") | |
try: | |
stopwords.words('english') | |
except: | |
nltk.download('stopwords') | |
stopwords.words('english') | |
return nlp | |
gen_llm = openai_llm(temperature=0, model_name='gpt-4o-mini', openai_api_key = openai_key) | |
consensus_client = instructor.patch(OpenAI(api_key=openai_key)) | |
embed_client = OpenAI(api_key = openai_key) | |
embed_model = "text-embedding-3-small" | |
embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key) | |
nlp = load_nlp() | |
def get_keywords(text, nlp=nlp): | |
result = [] | |
pos_tag = ['PROPN', 'ADJ', 'NOUN'] | |
doc = nlp(text.lower()) | |
for token in doc: | |
if(token.text in nlp.Defaults.stop_words or token.text in punctuation): | |
continue | |
if(token.pos_ in pos_tag): | |
result.append(token.text) | |
return result | |
def load_arxiv_corpus(): | |
arxiv_corpus = load_from_disk('data/') | |
arxiv_corpus.load_faiss_index('embed', 'data/astrophindex.faiss') | |
print('loading arxiv corpus from disk') | |
return arxiv_corpus | |
class RetrievalSystem(): | |
def __init__(self): | |
self.dataset = arxiv_corpus | |
self.client = OpenAI(api_key = openai_key) | |
self.embed_model = "text-embedding-3-small" | |
self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
self.hyde_client = openai_llm(temperature=0.5,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
self.cohere_client = cohere.Client(cohere_key) | |
def make_embedding(self, text): | |
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding | |
return str_embed | |
def embed_batch(self, texts: List[str]) -> List[np.ndarray]: | |
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data | |
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings] | |
def get_query_embedding(self, query): | |
return self.make_embedding(query) | |
def calc_faiss(self, query_embedding, top_k = 100): | |
# xq = query_embedding.reshape(-1,1).T.astype('float32') | |
# D, I = self.index.search(xq, top_k) | |
# return I[0], D[0] | |
tmp = self.dataset.search('embed', query_embedding, k=top_k) | |
return [tmp.indices, tmp.scores, self.dataset[tmp.indices]] | |
def rank_and_filter(self, query, query_embedding, top_k = 10, top_k_internal = 1000, return_scores=False): | |
if 'Keywords' in self.toggles: | |
self.weight_keywords = True | |
else: | |
self.weight_keywords = False | |
if 'Time' in self.toggles: | |
self.weight_date = True | |
else: | |
self.weight_date = False | |
if 'Citations' in self.toggles: | |
self.weight_citation = True | |
else: | |
self.weight_citation = False | |
topk_indices, similarities, small_corpus = self.calc_faiss(np.array(query_embedding), top_k = top_k_internal) | |
similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better) | |
if self.weight_keywords == True: | |
query_kws = get_keywords(query) | |
input_kws = self.query_input_keywords | |
query_kws = query_kws + input_kws | |
self.query_kws = query_kws | |
sub_kws = [small_corpus['keywords'][i] for i in range(top_k_internal)] | |
kw_weight = np.zeros((len(topk_indices),)) + 0.1 | |
for k in query_kws: | |
for i in (range(len(topk_indices))): | |
for j in range(len(sub_kws[i])): | |
if k.lower() in sub_kws[i][j].lower(): | |
kw_weight[i] = kw_weight[i] + 0.1 | |
# print(i, k, sub_kws[i][j]) | |
# kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36) | |
kw_weight = kw_weight / np.amax(kw_weight) | |
else: | |
kw_weight = np.ones((len(topk_indices),)) | |
if self.weight_date == True: | |
sub_dates = [small_corpus['date'][i] for i in range(top_k_internal)] | |
date = datetime.now().date() | |
date_diff = np.array([((date - i).days / 365.) for i in sub_dates]) | |
# age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5 | |
age_weight = (1 + np.exp(date_diff/0.7))**(-1) | |
age_weight = age_weight / np.amax(age_weight) | |
else: | |
age_weight = np.ones((len(topk_indices),)) | |
if self.weight_citation == True: | |
# st.write('weighting by citations') | |
sub_cites = np.array([small_corpus['cites'][i] for i in range(top_k_internal)]) | |
temp = sub_cites.copy() | |
temp[sub_cites > 300] = 300. | |
cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.) | |
cite_weight = cite_weight / np.amax(cite_weight) | |
else: | |
cite_weight = np.ones((len(topk_indices),)) | |
similarities = similarities * (kw_weight) * (age_weight) * (cite_weight) | |
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))] | |
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k] | |
top_scores = [doc[1] for doc in top_results] | |
top_indices = [doc[0] for doc in top_results] | |
small_df = self.dataset[top_indices] | |
if return_scores: | |
return {doc[0]: doc[1] for doc in top_results}, small_df | |
# Only keep the document IDs | |
top_results = [doc[0] for doc in top_results] | |
return top_results, small_df | |
def generate_doc(self, query: str): | |
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper | |
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion. | |
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen) | |
messages = [("system",prompt,),("human", query),] | |
return self.hyde_client.invoke(messages).content | |
def generate_docs(self, query: str): | |
docs = [] | |
for i in range(self.generate_n): | |
docs.append(self.generate_doc(query)) | |
return docs | |
def embed_docs(self, docs: List[str]): | |
return self.embed_batch(docs) | |
def retrieve(self, query, top_k, return_scores = False, | |
embed_query=True, max_doclen=250, | |
generate_n=1, temperature=0.5, | |
rerank_top_k = 250): | |
if max_doclen * generate_n > 8191: | |
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.") | |
query_embedding = self.get_query_embedding(query) | |
if self.hyde == True: | |
self.max_doclen = max_doclen | |
self.generate_n = generate_n | |
self.hyde_client.temperature = temperature | |
self.embed_query = embed_query | |
docs = self.generate_docs(query) | |
# st.expander('Abstract generated with hyde', expanded=False).write(docs) | |
doc_embeddings = self.embed_docs(docs) | |
if self.embed_query: | |
query_emb = self.embed_docs([query])[0] | |
doc_embeddings.append(query_emb) | |
query_embedding = np.mean(np.array(doc_embeddings), axis = 0) | |
if self.rerank == True: | |
top_results, small_df = self.rank_and_filter(query, | |
query_embedding, | |
rerank_top_k, | |
return_scores = False) | |
# try: | |
docs_for_rerank = [small_df['abstract'][i] for i in range(rerank_top_k)] | |
if len(docs_for_rerank) == 0: | |
return [] | |
reranked_results = self.cohere_client.rerank( | |
query=query, | |
documents=docs_for_rerank, | |
model='rerank-english-v3.0', | |
top_n=top_k | |
) | |
final_results = [] | |
for result in reranked_results.results: | |
doc_id = top_results[result.index] | |
doc_text = docs_for_rerank[result.index] | |
score = float(result.relevance_score) | |
final_results.append([doc_id, "", score]) | |
final_indices = [doc[0] for doc in final_results] | |
if return_scores: | |
return {result[0]: result[2] for result in final_results}, self.dataset[final_indices] | |
return [doc[0] for doc in final_results], self.dataset[final_indices] | |
# except: | |
# print('heavy load, please wait 10s and try again.') | |
else: | |
top_results, small_df = self.rank_and_filter(query, | |
query_embedding, | |
top_k, | |
return_scores = return_scores) | |
return top_results, small_df | |
def return_formatted_df(self, top_results, small_df): | |
df = pd.DataFrame(small_df) | |
df = df.drop(columns=['umap_x','umap_y','cite_bibcodes','ref_bibcodes']) | |
links = ['['+i+'](https://ui.adsabs.harvard.edu/abs/'+i+'/abstract)' for i in small_df['bibcode']] | |
# st.write(top_results[0:10]) | |
scores = [top_results[i] for i in top_results] | |
indices = [i for i in top_results] | |
df.insert(1,'ADS Link',links,True) | |
df.insert(2,'Relevance',scores,True) | |
df.insert(3,'indices',indices,True) | |
df = df[['ADS Link','Relevance','date','cites','title','authors','abstract','keywords','ads_id','indices','embed']] | |
df.index += 1 | |
return df | |
arxiv_corpus = load_arxiv_corpus() | |
ec = RetrievalSystem() | |
print('loaded retrieval system') | |
def Library(papers_df): | |
op_docs = '' | |
for i in range(len(papers_df)): | |
op_docs = op_docs + 'Paper %.0f:' %(i+1) + papers_df['title'][i+1] + '\n' + papers_df['abstract'][i+1] + '\n\n' | |
return op_docs | |
def run_rag_qa(query, papers_df, question_type): | |
loaders = [] | |
documents = [] | |
for i, row in papers_df.iterrows(): | |
content = f"Paper {i+1}: {row['title']}\n{row['abstract']}\n\n" | |
metadata = {"source": row['ads_id']} | |
doc = Document(page_content=content, metadata=metadata) | |
documents.append(doc) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True) | |
splits = text_splitter.split_documents(documents) | |
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4') | |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6}) | |
if question_type == 'Bibliometric': | |
template = bibliometric_prompt | |
elif question_type == 'Single-paper': | |
template = single_paper_prompt | |
elif question_type == 'Broad but nuanced': | |
template = deep_knowledge_prompt | |
else: | |
template = regular_prompt | |
prompt = PromptTemplate.from_template(template) | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
rag_chain_from_docs = ( | |
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"]))) | |
| prompt | |
| gen_llm | |
| StrOutputParser() | |
) | |
rag_chain_with_source = RunnableParallel( | |
{"context": retriever, "question": RunnablePassthrough()} | |
).assign(answer=rag_chain_from_docs) | |
rag_answer = rag_chain_with_source.invoke(query, ) | |
vectorstore.delete_collection() | |
# except: | |
# st.subheader('heavy load! please wait 10 seconds and try again.') | |
return rag_answer | |
def guess_question_type(query: str): | |
gen_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) | |
messages = [("system",question_categorization_prompt,),("human", query),] | |
return gen_client.invoke(messages).content | |
class OverallConsensusEvaluation(BaseModel): | |
rewritten_statement: str = Field( | |
..., | |
description="The query rewritten as a statement if it was initially a question" | |
) | |
consensus: Literal[ | |
"Strong Agreement Between Abstracts and Query", | |
"Moderate Agreement Between Abstracts and Query", | |
"Weak Agreement Between Abstracts and Query", | |
"No Clear Agreement/Disagreement Between Abstracts and Query", | |
"Weak Disagreement Between Abstracts and Query", | |
"Moderate Disagreement Between Abstracts and Query", | |
"Strong Disagreement Between Abstracts and Query" | |
] = Field( | |
..., | |
description="The overall level of consensus between the rewritten statement and the abstracts" | |
) | |
explanation: str = Field( | |
..., | |
description="A detailed explanation of the consensus evaluation (maximum six sentences)" | |
) | |
relevance_score: float = Field( | |
..., | |
description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall", | |
ge=0, | |
le=1 | |
) | |
def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation: | |
prompt = f""" | |
Query: {query} | |
You will be provided with {len(abstracts)} scientific abstracts. Your task is to do the following: | |
1. If the provided query is a question, rewrite it as a statement. This statement does not have to be true. Output this as 'Rewritten Statement:'. | |
2. Evaluate the overall consensus between the rewritten statement and the abstracts using one of the following levels: | |
- Strong Agreement Between Abstracts and Query | |
- Moderate Agreement Between Abstracts and Query | |
- Weak Agreement Between Abstracts and Query | |
- No Clear Agreement/Disagreement Between Abstracts and Query | |
- Weak Disagreement Between Abstracts and Query | |
- Moderate Disagreement Between Abstracts and Query | |
- Strong Disagreement Between Abstracts and Query | |
Output this as 'Consensus:' | |
3. Provide a detailed explanation of your consensus evaluation in maximum six sentences. Output this as 'Explanation:' | |
4. Assign a relevance score as a float between 0 to 1, where: | |
- 1.0: Perfect match in content and quality | |
- 0.8-0.9: Excellent, with minor differences | |
- 0.6-0.7: Good, captures main points but misses some details | |
- 0.4-0.5: Fair, partially relevant but significant gaps | |
- 0.2-0.3: Poor, major inaccuracies or omissions | |
- 0.0-0.1: Completely irrelevant or incorrect | |
Output this as 'Relevance Score:' | |
Here are the abstracts: | |
{' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])} | |
Provide your evaluation in the structured format described above. | |
""" | |
response = consensus_client.chat.completions.create( | |
model="gpt-4o-mini", # used to be "gpt-4", | |
response_model=OverallConsensusEvaluation, | |
messages=[ | |
{"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks. | |
Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query. | |
If you don't know the answer, just say that you don't know. | |
Use six sentences maximum and keep the answer concise."""}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=0 | |
) | |
return response | |
def calc_outlier_flag(papers_df, top_k, cutoff_adjust = 0.1): | |
cut_dist = np.load('pfdr_arxiv_cutoff_distances.npy') - cutoff_adjust | |
pts = np.array(papers_df['embed'].tolist()) | |
centroid = np.mean(pts,0) | |
dists = np.sqrt(np.sum((pts-centroid)**2,1)) | |
outlier_flag = (dists > cut_dist[top_k-1]) | |
return outlier_flag | |
def make_embedding_plot(papers_df, top_k, consensus_answer, arxiv_corpus=arxiv_corpus): | |
plt_indices = np.array(papers_df['indices'].tolist()) | |
xax = np.array(arxiv_corpus['umap_x']) | |
yax = np.array(arxiv_corpus['umap_y']) | |
outlier_flag = calc_outlier_flag(papers_df, top_k, cutoff_adjust=0.25) | |
alphas = np.ones((len(plt_indices),)) * 0.9 | |
alphas[outlier_flag] = 0.5 | |
fig = plt.figure(figsize=(9*1.8,12*1.8)) | |
plt.scatter(xax,yax, s=1, alpha=0.01, c='k') | |
clkws = np.load('kw_tags.npz') | |
all_x, all_y, all_topics, repeat_flag = clkws['all_x'], clkws['all_y'], clkws['all_topics'], clkws['repeat_flag'] | |
for i in range(len(all_topics)): | |
if repeat_flag[i] == False: | |
plt.text(all_x[i], all_y[i], all_topics[i],fontsize=9,ha="center", va="center", | |
bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.3',alpha=0.81)) | |
plt.scatter(xax[plt_indices], yax[plt_indices], s=300*alphas**2, alpha=alphas, c='w',zorder=1000) | |
plt.scatter(xax[plt_indices], yax[plt_indices], s=100*alphas**2, alpha=alphas, c='dodgerblue',zorder=1001) | |
# plt.scatter(xax[plt_indices][outlier_flag], yax[plt_indices][outlier_flag], s=100, alpha=1., c='firebrick') | |
plt.axis([0,20,-4.2,18]) | |
plt.axis('off') | |
return fig | |
def run_pathfinder(query, top_k, extra_keywords, toggles, prompt_type, rag_type, ec=ec, progress=gr.Progress()): | |
yield None, None, None, None, None | |
search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...'] | |
gen_text_list = ['making the LLM talk to the papers...','invoking arcane rituals...','gone to library, please wait...','is there really an answer to this...'] | |
input_keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else [] | |
query_keywords = get_keywords(query) | |
ec.query_input_keywords = input_keywords+query_keywords | |
ec.toggles = toggles | |
if rag_type == "Semantic Search": | |
ec.hyde = False | |
ec.rerank = False | |
elif rag_type == "Semantic + HyDE": | |
ec.hyde = True | |
ec.rerank = False | |
elif rag_type == "Semantic + HyDE + CoHERE": | |
ec.hyde = True | |
ec.rerank = True | |
progress(0.2, desc=search_text_list[np.random.choice(len(search_text_list))]) | |
rs, small_df = ec.retrieve(query, top_k = top_k, return_scores=True) | |
formatted_df = ec.return_formatted_df(rs, small_df) | |
yield formatted_df, None, None, None, None | |
progress(0.4, desc=gen_text_list[np.random.choice(len(gen_text_list))]) | |
rag_answer = run_rag_qa(query, formatted_df, prompt_type) | |
yield formatted_df, rag_answer['answer'], None, None, None | |
progress(0.6, desc="Generating consensus") | |
consensus_answer = evaluate_overall_consensus(query, [formatted_df['abstract'][i+1] for i in range(len(formatted_df))]) | |
consensus = '## Consensus \n'+consensus_answer.consensus + '\n\n'+consensus_answer.explanation + '\n\n > Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score | |
yield formatted_df, rag_answer['answer'], consensus, None, None | |
progress(0.8, desc="Analyzing question type") | |
question_type_gen = guess_question_type(query) | |
if '<categorization>' in question_type_gen: | |
question_type_gen = question_type_gen.split('<categorization>')[1] | |
if '</categorization>' in question_type_gen: | |
question_type_gen = question_type_gen.split('</categorization>')[0] | |
question_type_gen = question_type_gen.replace('\n',' \n') | |
qn_type = question_type_gen | |
yield formatted_df, rag_answer['answer'], consensus, qn_type, None | |
progress(1.0, desc="Visualizing embeddings") | |
fig = make_embedding_plot(formatted_df, top_k, consensus_answer) | |
yield formatted_df, rag_answer['answer'], consensus, qn_type, fig | |
def create_interface(): | |
custom_css = """ | |
#custom-slider-* { | |
background-color: #ffffff; | |
} | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
with gr.Tabs(): | |
# with gr.Tab("What is Pathfinder?"): | |
# gr.Markdown(pathfinder_text) | |
with gr.Tab("pathfinder"): | |
with gr.Accordion("What is Pathfinder? / How do I use it?", open=False): | |
gr.Markdown(pathfinder_text) | |
with gr.Row(): | |
query = gr.Textbox(label="Ask me anything") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=300): | |
top_k = gr.Slider(1, 30, step=1, value=10, label="top-k", info="Number of papers to retrieve") | |
keywords = gr.Textbox(label="Optional Keywords (comma-separated)",value="") | |
toggles = gr.CheckboxGroup(["Keywords", "Time", "Citations"], label="Weight by", info="weighting retrieved papers",value=['Keywords']) | |
prompt_type = gr.Radio(choices=["Single-paper", "Multi-paper", "Bibliometric", "Broad but nuanced"], label="Prompt Specialization", value='Multi-paper') | |
rag_type = gr.Radio(choices=["Semantic Search", "Semantic + HyDE", "Semantic + HyDE + CoHERE"], label="RAG Method",value='Semantic + HyDE + CoHERE') | |
with gr.Column(scale=2, min_width=300): | |
img1 = gr.Image("local_files/pathfinder_logo.png") | |
btn = gr.Button("Run pfdr!") | |
# search_results_state = gr.State([]) | |
ret_papers = gr.Dataframe(label='top-k retrieved papers', datatype='markdown') | |
search_results_state = gr.Markdown(label='Generated Answer') | |
qntype = gr.Markdown(label='Question type suggestion') | |
conc = gr.Markdown(label='Consensus') | |
plot = gr.Plot(label='top-k in embedding space') | |
inputs = [query, top_k, keywords, toggles, prompt_type, rag_type] | |
outputs = [ret_papers, search_results_state, qntype, conc, plot] | |
btn.click(fn=run_pathfinder, inputs=inputs, outputs=outputs) | |
return demo | |
if __name__ == "__main__": | |
pathfinder = create_interface() | |
pathfinder.launch() | |