Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import datetime, os | |
from langchain.llms import OpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
import openai | |
import faiss | |
import streamlit as st | |
import feedparser | |
import urllib | |
import cloudpickle as cp | |
import pickle | |
from urllib.request import urlopen | |
from summa import summarizer | |
import numpy as np | |
# openai.organization = st.secrets.openai.org | |
# openai.api_key = st.secrets.openai.api_key | |
openai.organization = st.secrets["org"] | |
openai.api_key = st.secrets["api_key"] | |
os.environ["OPENAI_API_KEY"] = openai.api_key | |
def get_feeds_data(url): | |
with open(url, "rb") as fp: | |
data = pickle.load(fp) | |
st.sidebar.success("Loaded data!") | |
# data = cp.load(urlopen(url)) | |
# st.sidebar.success("Fetched data from API!") | |
return data | |
embeddings = OpenAIEmbeddings() | |
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_" | |
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0" | |
dateval = "27-Jun-2023" | |
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl" | |
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl" | |
gal_feeds = get_feeds_data(feeds_link) | |
arxiv_ada_embeddings = get_feeds_data(embed_link) | |
ctr = -1 | |
num_chunks = len(gal_feeds) | |
all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], [] | |
for nc in range(num_chunks): | |
for i in range(len(gal_feeds[nc].entries)): | |
text = gal_feeds[nc].entries[i].summary | |
text = text.replace('\n', ' ') | |
text = text.replace('\\', '') | |
all_text.append(text) | |
all_titles.append(gal_feeds[nc].entries[i].title) | |
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2]) | |
all_links.append(gal_feeds[nc].entries[i].links[1].href) | |
all_authors.append(gal_feeds[nc].entries[i].authors) | |
d = arxiv_ada_embeddings.shape[1] # dimension | |
nb = arxiv_ada_embeddings.shape[0] # database size | |
xb = arxiv_ada_embeddings.astype('float32') | |
index = faiss.IndexFlatL2(d) | |
index.add(xb) | |
def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'): | |
""" | |
Query ArXiv to return search results for a particular query | |
Parameters | |
---------- | |
query: str | |
query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable. | |
max_results: int, default = 10 | |
number of results to return. numbers > 1000 generally lead to timeouts | |
start: int, default = 0 | |
start index for results reported. use this if you're interested in running chunks. | |
Returns | |
------- | |
feed: dict | |
object containing requested results parsed with feedparser | |
Notes | |
----- | |
add functionality for chunk parsing, as well as storage and retreival | |
""" | |
# Base api query url | |
base_url = 'http://export.arxiv.org/api/query?'; | |
query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query, | |
start, | |
max_results,sort_by,sort_order) | |
response = urllib.request.urlopen(base_url+query).read() | |
feed = feedparser.parse(response) | |
return feed | |
def find_papers_by_author(auth_name): | |
doc_ids = [] | |
for doc_id in range(len(all_authors)): | |
for auth_id in range(len(all_authors[doc_id])): | |
if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower(): | |
print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name']) | |
doc_ids.append(doc_id) | |
return doc_ids | |
def faiss_based_indices(input_vector, nindex=10): | |
xq = input_vector.reshape(-1,1).T.astype('float32') | |
D, I = index.search(xq, nindex) | |
return I[0], D[0] | |
def list_similar_papers_v2(model_data, | |
doc_id = [], input_type = 'doc_id', | |
show_authors = False, show_summary = False, | |
return_n = 10): | |
arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data | |
if input_type == 'doc_id': | |
print('Doc ID: ',doc_id,', title: ',all_titles[doc_id]) | |
# inferred_vector = model.infer_vector(train_corpus[doc_id].words) | |
inferred_vector = arxiv_ada_embeddings[doc_id,0:] | |
start_range = 1 | |
elif input_type == 'arxiv_id': | |
print('ArXiv id: ',doc_id) | |
arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id)) | |
if len(arxiv_query_feed.entries) == 0: | |
print('error: arxiv id not found.') | |
return | |
else: | |
print('Title: '+arxiv_query_feed.entries[0].title) | |
inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary)) | |
# arxiv_query_tokens = gensim.utils.simple_preprocess(arxiv_query_feed.entries[0].summary) | |
# inferred_vector = model.infer_vector(arxiv_query_tokens) | |
start_range = 0 | |
elif input_type == 'keywords': | |
# print('Keyword(s): ',[doc_id[i] for i in range(len(doc_id))]) | |
# word_vector = model.wv[doc_id[0]] | |
# if len(doc_id) > 1: | |
# print('multi-keyword') | |
# for i in range(1,len(doc_id)): | |
# word_vector = word_vector + model.wv[doc_id[i]] | |
# # word_vector = model.infer_vector(doc_id) | |
# inferred_vector = word_vector | |
inferred_vector = np.array(embeddings.embed_query(doc_id)) | |
start_range = 0 | |
else: | |
print('unrecognized input type.') | |
return | |
# sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs)) | |
sims, dists = faiss_based_indices(inferred_vector, return_n+2) | |
textstr = '' | |
textstr = textstr + '-----------------------------\n' | |
textstr = textstr + 'Most similar/relevant papers: \n' | |
textstr = textstr + '-----------------------------\n\n' | |
for i in range(start_range,start_range+return_n): | |
# print(i, all_titles[sims[i]], ' (Distance: %.2f' %dists[i] ,')') | |
textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+') \n' | |
textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+') \n' | |
if show_authors == True: | |
textstr = textstr + '**Authors:** ' | |
temp = all_authors[sims[i]] | |
for ak in range(len(temp)): | |
if ak < len(temp)-1: | |
textstr = textstr + temp[ak].name + ', ' | |
else: | |
textstr = textstr + temp[ak].name + ' \n' | |
if show_summary == True: | |
textstr = textstr + '**Summary:** ' | |
text = all_text[sims[i]] | |
text = text.replace('\n', ' ') | |
textstr = textstr + summarizer.summarize(text) + ' \n' | |
if show_authors == True or show_summary == True: | |
textstr = textstr + ' ' | |
textstr = textstr + ' \n' | |
return textstr | |
model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors] | |
st.title('ArXiv similarity search:') | |
st.markdown('Search for similar papers by arxiv id or phrase:') | |
st.markdown('[Includes papers up to: `'+dateval+'`]') | |
search_type = st.radio( | |
"What are you searching by?", | |
('arxiv id', 'text query'), index=1) | |
query = st.text_input('Search query or arxivid', value="what causes galaxy quenching?") | |
show_authors = st.checkbox('Show author information', value = True) | |
show_summary = st.checkbox('Show paper summary', value = True) | |
return_n = st.slider('How many papers should I show?', 1, 30, 10) | |
if search_type == 'arxiv id': | |
sims = list_similar_papers_v2(model_data, doc_id = query, input_type='arxiv_id', show_authors = show_authors, show_summary = show_summary, return_n = return_n) | |
else: | |
sims = list_similar_papers_v2(model_data, doc_id = query, input_type='keywords', show_authors = show_authors, show_summary = show_summary, return_n = return_n) | |
st.markdown(sims) | |