Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update qa sources
Browse files- .DS_Store +0 -0
- local_files/.DS_Store +0 -0
- pages/{3_qa_sources.py β 3_qa_sources_v1.py} +0 -0
- pages/3_qa_sources_v2.py +437 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
local_files/.DS_Store
CHANGED
Binary files a/local_files/.DS_Store and b/local_files/.DS_Store differ
|
|
pages/{3_qa_sources.py β 3_qa_sources_v1.py}
RENAMED
File without changes
|
pages/3_qa_sources_v2.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# set the environment variables needed for openai package to know to reach out to azure
|
2 |
+
import os
|
3 |
+
import datetime
|
4 |
+
import faiss
|
5 |
+
import streamlit as st
|
6 |
+
import feedparser
|
7 |
+
import urllib
|
8 |
+
import cloudpickle as cp
|
9 |
+
import pickle
|
10 |
+
from urllib.request import urlopen
|
11 |
+
from summa import summarizer
|
12 |
+
import numpy as np
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import requests
|
15 |
+
import json
|
16 |
+
|
17 |
+
from langchain.document_loaders import TextLoader
|
18 |
+
from langchain.indexes import VectorstoreIndexCreator
|
19 |
+
from langchain_openai import AzureOpenAIEmbeddings
|
20 |
+
from langchain.llms import OpenAI
|
21 |
+
from langchain_openai import AzureChatOpenAI
|
22 |
+
from langchain import hub
|
23 |
+
from langchain_core.prompts import PromptTemplate
|
24 |
+
from langchain_core.runnables import RunnablePassthrough
|
25 |
+
from langchain_core.output_parsers import StrOutputParser
|
26 |
+
from langchain_core.runnables import RunnableParallel
|
27 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
28 |
+
from langchain_community.vectorstores import Chroma
|
29 |
+
|
30 |
+
os.environ["OPENAI_API_TYPE"] = "azure"
|
31 |
+
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
|
32 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
|
33 |
+
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
|
34 |
+
|
35 |
+
embeddings = AzureOpenAIEmbeddings(
|
36 |
+
deployment="embedding",
|
37 |
+
model="text-embedding-ada-002",
|
38 |
+
azure_endpoint=st.secrets["endpoint1"],
|
39 |
+
)
|
40 |
+
|
41 |
+
llm = AzureChatOpenAI(
|
42 |
+
deployment_name="gpt4_small",
|
43 |
+
openai_api_version="2023-12-01-preview",
|
44 |
+
azure_endpoint=st.secrets["endpoint2"],
|
45 |
+
openai_api_key=st.secrets["key2"],
|
46 |
+
openai_api_type="azure",
|
47 |
+
temperature=0.
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
@st.cache_data
|
52 |
+
def get_feeds_data(url):
|
53 |
+
# data = cp.load(urlopen(url))
|
54 |
+
with open(url, "rb") as fp:
|
55 |
+
data = pickle.load(fp)
|
56 |
+
st.sidebar.success("Loaded data")
|
57 |
+
return data
|
58 |
+
|
59 |
+
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
|
60 |
+
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
|
61 |
+
dateval = "27-Jun-2023"
|
62 |
+
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
|
63 |
+
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
|
64 |
+
gal_feeds = get_feeds_data(feeds_link)
|
65 |
+
arxiv_ada_embeddings = get_feeds_data(embed_link)
|
66 |
+
|
67 |
+
@st.cache_data
|
68 |
+
def get_embedding_data(url):
|
69 |
+
# data = cp.load(urlopen(url))
|
70 |
+
with open(url, "rb") as fp:
|
71 |
+
data = pickle.load(fp)
|
72 |
+
st.sidebar.success("Fetched data from API!")
|
73 |
+
return data
|
74 |
+
|
75 |
+
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
|
76 |
+
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
|
77 |
+
e2d = get_embedding_data(url)
|
78 |
+
# e2d, _, _, _, _ = get_embedding_data(url)
|
79 |
+
|
80 |
+
ctr = -1
|
81 |
+
num_chunks = len(gal_feeds)
|
82 |
+
all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], []
|
83 |
+
|
84 |
+
for nc in range(num_chunks):
|
85 |
+
|
86 |
+
for i in range(len(gal_feeds[nc].entries)):
|
87 |
+
text = gal_feeds[nc].entries[i].summary
|
88 |
+
text = text.replace('\n', ' ')
|
89 |
+
text = text.replace('\\', '')
|
90 |
+
all_text.append(text)
|
91 |
+
all_titles.append(gal_feeds[nc].entries[i].title)
|
92 |
+
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
|
93 |
+
all_links.append(gal_feeds[nc].entries[i].links[1].href)
|
94 |
+
all_authors.append(gal_feeds[nc].entries[i].authors)
|
95 |
+
|
96 |
+
d = arxiv_ada_embeddings.shape[1] # dimension
|
97 |
+
nb = arxiv_ada_embeddings.shape[0] # database size
|
98 |
+
xb = arxiv_ada_embeddings.astype('float32')
|
99 |
+
index = faiss.IndexFlatL2(d)
|
100 |
+
index.add(xb)
|
101 |
+
|
102 |
+
def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'):
|
103 |
+
"""
|
104 |
+
Query ArXiv to return search results for a particular query
|
105 |
+
Parameters
|
106 |
+
----------
|
107 |
+
query: str
|
108 |
+
query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable.
|
109 |
+
max_results: int, default = 10
|
110 |
+
number of results to return. numbers > 1000 generally lead to timeouts
|
111 |
+
start: int, default = 0
|
112 |
+
start index for results reported. use this if you're interested in running chunks.
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
feed: dict
|
116 |
+
object containing requested results parsed with feedparser
|
117 |
+
Notes
|
118 |
+
-----
|
119 |
+
add functionality for chunk parsing, as well as storage and retreival
|
120 |
+
"""
|
121 |
+
|
122 |
+
base_url = 'http://export.arxiv.org/api/query?';
|
123 |
+
query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query,
|
124 |
+
start,
|
125 |
+
max_results,sort_by,sort_order)
|
126 |
+
|
127 |
+
response = urllib.request.urlopen(base_url+query).read()
|
128 |
+
feed = feedparser.parse(response)
|
129 |
+
return feed
|
130 |
+
|
131 |
+
def find_papers_by_author(auth_name):
|
132 |
+
|
133 |
+
doc_ids = []
|
134 |
+
for doc_id in range(len(all_authors)):
|
135 |
+
for auth_id in range(len(all_authors[doc_id])):
|
136 |
+
if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower():
|
137 |
+
print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name'])
|
138 |
+
doc_ids.append(doc_id)
|
139 |
+
|
140 |
+
return doc_ids
|
141 |
+
|
142 |
+
def faiss_based_indices(input_vector, nindex=10):
|
143 |
+
xq = input_vector.reshape(-1,1).T.astype('float32')
|
144 |
+
D, I = index.search(xq, nindex)
|
145 |
+
return I[0], D[0]
|
146 |
+
|
147 |
+
def list_similar_papers_v2(model_data,
|
148 |
+
doc_id = [], input_type = 'doc_id',
|
149 |
+
show_authors = False, show_summary = False,
|
150 |
+
return_n = 10):
|
151 |
+
|
152 |
+
arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data
|
153 |
+
|
154 |
+
if input_type == 'doc_id':
|
155 |
+
print('Doc ID: ',doc_id,', title: ',all_titles[doc_id])
|
156 |
+
# inferred_vector = model.infer_vector(train_corpus[doc_id].words)
|
157 |
+
inferred_vector = arxiv_ada_embeddings[doc_id,0:]
|
158 |
+
start_range = 1
|
159 |
+
elif input_type == 'arxiv_id':
|
160 |
+
print('ArXiv id: ',doc_id)
|
161 |
+
arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id))
|
162 |
+
if len(arxiv_query_feed.entries) == 0:
|
163 |
+
print('error: arxiv id not found.')
|
164 |
+
return
|
165 |
+
else:
|
166 |
+
print('Title: '+arxiv_query_feed.entries[0].title)
|
167 |
+
inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary))
|
168 |
+
start_range = 0
|
169 |
+
elif input_type == 'keywords':
|
170 |
+
inferred_vector = np.array(embeddings.embed_query(doc_id))
|
171 |
+
start_range = 0
|
172 |
+
else:
|
173 |
+
print('unrecognized input type.')
|
174 |
+
return
|
175 |
+
|
176 |
+
sims, dists = faiss_based_indices(inferred_vector, return_n+2)
|
177 |
+
textstr = ''
|
178 |
+
abstracts_relevant = []
|
179 |
+
fhdrs = []
|
180 |
+
|
181 |
+
for i in range(start_range,start_range+return_n):
|
182 |
+
|
183 |
+
abstracts_relevant.append(all_text[sims[i]])
|
184 |
+
fhdr = all_authors[sims[i]][0]['name'].split()[-1] + all_arxivid[sims[i]][0:2] +'_'+ all_arxivid[sims[i]]
|
185 |
+
fhdrs.append(fhdr)
|
186 |
+
textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+') \n'
|
187 |
+
textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+') \n'
|
188 |
+
if show_authors == True:
|
189 |
+
textstr = textstr + '**Authors:** '
|
190 |
+
temp = all_authors[sims[i]]
|
191 |
+
for ak in range(len(temp)):
|
192 |
+
if ak < len(temp)-1:
|
193 |
+
textstr = textstr + temp[ak].name + ', '
|
194 |
+
else:
|
195 |
+
textstr = textstr + temp[ak].name + ' \n'
|
196 |
+
if show_summary == True:
|
197 |
+
textstr = textstr + '**Summary:** '
|
198 |
+
text = all_text[sims[i]]
|
199 |
+
text = text.replace('\n', ' ')
|
200 |
+
textstr = textstr + summarizer.summarize(text) + ' \n'
|
201 |
+
if show_authors == True or show_summary == True:
|
202 |
+
textstr = textstr + ' '
|
203 |
+
textstr = textstr + ' \n'
|
204 |
+
return textstr, abstracts_relevant, fhdrs, sims
|
205 |
+
|
206 |
+
|
207 |
+
def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=None):
|
208 |
+
headers = {
|
209 |
+
"Content-Type": "application/json",
|
210 |
+
"Authorization": f"Bearer {openai.api_key}",
|
211 |
+
}
|
212 |
+
|
213 |
+
data = {
|
214 |
+
"model": model,
|
215 |
+
"messages": messages,
|
216 |
+
"temperature": temperature,
|
217 |
+
}
|
218 |
+
|
219 |
+
if max_tokens is not None:
|
220 |
+
data["max_tokens"] = max_tokens
|
221 |
+
response = requests.post(API_ENDPOINT, headers=headers, data=json.dumps(data))
|
222 |
+
if response.status_code == 200:
|
223 |
+
return response.json()["choices"][0]["message"]["content"]
|
224 |
+
else:
|
225 |
+
raise Exception(f"Error {response.status_code}: {response.text}")
|
226 |
+
|
227 |
+
model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
|
228 |
+
|
229 |
+
def format_docs(docs):
|
230 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
231 |
+
|
232 |
+
def get_textstr(i, show_authors=False, show_summary=False):
|
233 |
+
textstr = ''
|
234 |
+
textstr = '**'+ all_titles[i] +'** \n'
|
235 |
+
textstr = textstr + '**ArXiv:** ['+all_arxivid[i]+'](https://arxiv.org/abs/'+all_arxivid[i]+') \n'
|
236 |
+
if show_authors == True:
|
237 |
+
textstr = textstr + '**Authors:** '
|
238 |
+
temp = all_authors[i]
|
239 |
+
for ak in range(len(temp)):
|
240 |
+
if ak < len(temp)-1:
|
241 |
+
textstr = textstr + temp[ak].name + ', '
|
242 |
+
else:
|
243 |
+
textstr = textstr + temp[ak].name + ' \n'
|
244 |
+
if show_summary == True:
|
245 |
+
textstr = textstr + '**Summary:** '
|
246 |
+
text = all_text[i]
|
247 |
+
text = text.replace('\n', ' ')
|
248 |
+
textstr = textstr + summarizer.summarize(text) + ' \n'
|
249 |
+
if show_authors == True or show_summary == True:
|
250 |
+
textstr = textstr + ' '
|
251 |
+
textstr = textstr + ' \n'
|
252 |
+
|
253 |
+
return textstr
|
254 |
+
|
255 |
+
|
256 |
+
def run_rag(query, return_n = 10, show_authors = True, show_summary = True):
|
257 |
+
|
258 |
+
sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
|
259 |
+
doc_id = query,
|
260 |
+
input_type='keywords',
|
261 |
+
show_authors = show_authors, show_summary = show_summary,
|
262 |
+
return_n = return_n)
|
263 |
+
|
264 |
+
temp_abst = ''
|
265 |
+
loaders = []
|
266 |
+
for i in range(len(absts)):
|
267 |
+
temp_abst = absts[i]
|
268 |
+
|
269 |
+
try:
|
270 |
+
text_file = open("absts/"+fhdrs[i]+".txt", "w")
|
271 |
+
except:
|
272 |
+
os.mkdir('absts')
|
273 |
+
text_file = open("absts/"+fhdrs[i]+".txt", "w")
|
274 |
+
n = text_file.write(temp_abst)
|
275 |
+
text_file.close()
|
276 |
+
loader = TextLoader("absts/"+fhdrs[i]+".txt")
|
277 |
+
loaders.append(loader)
|
278 |
+
|
279 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
|
280 |
+
splits = text_splitter.split_documents([loader.load()[0] for loader in loaders])
|
281 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
282 |
+
retriever = vectorstore.as_retriever()
|
283 |
+
|
284 |
+
template = """You are an assistant with expertise in astrophysics for question-answering tasks.
|
285 |
+
Use the following pieces of retrieved context from the literature to answer the question.
|
286 |
+
If you don't know the answer, just say that you don't know.
|
287 |
+
Use six sentences maximum and keep the answer concise.
|
288 |
+
|
289 |
+
{context}
|
290 |
+
|
291 |
+
Question: {question}
|
292 |
+
|
293 |
+
Answer:"""
|
294 |
+
custom_rag_prompt = PromptTemplate.from_template(template)
|
295 |
+
|
296 |
+
rag_chain_from_docs = (
|
297 |
+
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
|
298 |
+
| custom_rag_prompt
|
299 |
+
| llm
|
300 |
+
| StrOutputParser()
|
301 |
+
)
|
302 |
+
|
303 |
+
rag_chain_with_source = RunnableParallel(
|
304 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
305 |
+
).assign(answer=rag_chain_from_docs)
|
306 |
+
|
307 |
+
rag_answer = rag_chain_with_source.invoke(query)
|
308 |
+
|
309 |
+
st.markdown('### User query: '+query)
|
310 |
+
|
311 |
+
st.markdown(rag_answer['answer'])
|
312 |
+
opstr = '#### Primary sources: \n'
|
313 |
+
srcnames = []
|
314 |
+
for i in range(len(rag_answer['context'])):
|
315 |
+
srcnames.append(rag_answer['context'][0].metadata['source'])
|
316 |
+
|
317 |
+
srcnames = np.unique(srcnames)
|
318 |
+
srcindices = []
|
319 |
+
for i in range(len(srcnames)):
|
320 |
+
temp = srcnames[i].split('_')[1]
|
321 |
+
srcindices.append(int(srcnames[i].split('_')[0].split('/')[1]))
|
322 |
+
if int(temp[-2:]) < 40:
|
323 |
+
temp = temp[0:-2] + ' et al. 20' + temp[-2:]
|
324 |
+
else:
|
325 |
+
temp = temp[0:-2] + ' et al. 19' + temp[-2:]
|
326 |
+
temp = '['+temp+']('+all_links[int(srcnames[i].split('_')[0].split('/')[1])]+')'
|
327 |
+
st.markdown(temp)
|
328 |
+
simids = np.array(srcindices)
|
329 |
+
|
330 |
+
fig = plt.figure(figsize=(9,9))
|
331 |
+
plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
|
332 |
+
plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
|
333 |
+
plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
|
334 |
+
st.pyplot(fig)
|
335 |
+
|
336 |
+
st.markdown('\n #### List of relevant papers:')
|
337 |
+
st.markdown(sims)
|
338 |
+
|
339 |
+
return rag_answer
|
340 |
+
|
341 |
+
def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
|
342 |
+
|
343 |
+
show_authors = True
|
344 |
+
show_summary = True
|
345 |
+
sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
|
346 |
+
doc_id = query,
|
347 |
+
input_type='keywords',
|
348 |
+
show_authors = show_authors, show_summary = show_summary,
|
349 |
+
return_n = return_n)
|
350 |
+
|
351 |
+
temp_abst = ''
|
352 |
+
loaders = []
|
353 |
+
for i in range(len(absts)):
|
354 |
+
temp_abst = absts[i]
|
355 |
+
|
356 |
+
try:
|
357 |
+
text_file = open("absts/"+fhdrs[i]+".txt", "w")
|
358 |
+
except:
|
359 |
+
os.mkdir('absts')
|
360 |
+
text_file = open("absts/"+fhdrs[i]+".txt", "w")
|
361 |
+
n = text_file.write(temp_abst)
|
362 |
+
text_file.close()
|
363 |
+
loader = TextLoader("absts/"+fhdrs[i]+".txt")
|
364 |
+
loaders.append(loader)
|
365 |
+
|
366 |
+
lc_index = VectorstoreIndexCreator().from_loaders(loaders)
|
367 |
+
|
368 |
+
st.markdown('### User query: '+query)
|
369 |
+
if show_pure_answer == True:
|
370 |
+
st.markdown('pure answer:')
|
371 |
+
st.markdown(lc_index.query(query))
|
372 |
+
st.markdown(' ')
|
373 |
+
st.markdown('#### context-based answer from sources:')
|
374 |
+
output = lc_index.query_with_sources(query + ' Let\'s work this out in a step by step way to be sure we have the right answer.' ) #zero-shot in-context prompting from Zhou+22, Kojima+22
|
375 |
+
st.markdown(output['answer'])
|
376 |
+
opstr = '#### Primary sources: \n'
|
377 |
+
st.markdown(opstr)
|
378 |
+
|
379 |
+
# opstr = ''
|
380 |
+
# for i in range(len(output['sources'])):
|
381 |
+
# opstr = opstr +'\n'+ output['sources'][i]
|
382 |
+
|
383 |
+
textstr = ''
|
384 |
+
ng = len(output['sources'].split())
|
385 |
+
abs_indices = []
|
386 |
+
|
387 |
+
for i in range(ng):
|
388 |
+
if i == (ng-1):
|
389 |
+
tempid = output['sources'].split()[i].split('_')[1][0:-4]
|
390 |
+
else:
|
391 |
+
tempid = output['sources'].split()[i].split('_')[1][0:-5]
|
392 |
+
try:
|
393 |
+
abs_index = all_arxivid.index(tempid)
|
394 |
+
abs_indices.append(abs_index)
|
395 |
+
textstr = textstr + str(i+1)+'. **'+ all_titles[abs_index] +' \n'
|
396 |
+
textstr = textstr + '**ArXiv:** ['+all_arxivid[abs_index]+'](https://arxiv.org/abs/'+all_arxivid[abs_index]+') \n'
|
397 |
+
textstr = textstr + '**Authors:** '
|
398 |
+
temp = all_authors[abs_index]
|
399 |
+
for ak in range(4):
|
400 |
+
if ak < len(temp)-1:
|
401 |
+
textstr = textstr + temp[ak].name + ', '
|
402 |
+
else:
|
403 |
+
textstr = textstr + temp[ak].name + ' \n'
|
404 |
+
if len(temp) > 3:
|
405 |
+
textstr = textstr + ' et al. \n'
|
406 |
+
textstr = textstr + '**Summary:** '
|
407 |
+
text = all_text[abs_index]
|
408 |
+
text = text.replace('\n', ' ')
|
409 |
+
textstr = textstr + summarizer.summarize(text) + ' \n'
|
410 |
+
except:
|
411 |
+
textstr = textstr + output['sources'].split()[i]
|
412 |
+
# opstr = opstr + ' \n ' + output['sources'].split()[i][6:-5].split('_')[0]
|
413 |
+
# opstr = opstr + ' \n Arxiv id: ' + output['sources'].split()[i][6:-5].split('_')[1]
|
414 |
+
|
415 |
+
textstr = textstr + ' '
|
416 |
+
textstr = textstr + ' \n'
|
417 |
+
st.markdown(textstr)
|
418 |
+
|
419 |
+
fig = plt.figure(figsize=(9,9))
|
420 |
+
plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
|
421 |
+
plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
|
422 |
+
plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
|
423 |
+
st.pyplot(fig)
|
424 |
+
|
425 |
+
if show_all_sources == True:
|
426 |
+
st.markdown('\n #### Other interesting papers:')
|
427 |
+
st.markdown(sims)
|
428 |
+
return output
|
429 |
+
|
430 |
+
st.title('ArXiv-based question answering')
|
431 |
+
st.markdown('[Includes papers up to: `'+dateval+'`]')
|
432 |
+
st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. Please use sparingly because it costs me money right now. You might need to wait for a few seconds for the GPT-4 query to return an answer (check top right corner to see if it is still running).')
|
433 |
+
|
434 |
+
query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
|
435 |
+
return_n = st.slider('How many papers should I show?', 1, 20, 10)
|
436 |
+
|
437 |
+
sims = run_query(query, return_n = return_n)
|