Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
better fix for chromadb issue
Browse filesfrom here: https://github.com/langchain-ai/langchain/issues/26884
- app_gradio.py +3 -2
app_gradio.py
CHANGED
@@ -27,6 +27,7 @@ from langchain_core.output_parsers import StrOutputParser
|
|
27 |
from langchain.callbacks import FileCallbackHandler
|
28 |
from langchain.callbacks.manager import CallbackManager
|
29 |
from langchain.schema import Document
|
|
|
30 |
|
31 |
import instructor
|
32 |
from pydantic import BaseModel, Field
|
@@ -313,12 +314,12 @@ def run_rag_qa(query, papers_df, question_type):
|
|
313 |
doc = Document(page_content=content, metadata=metadata)
|
314 |
documents.append(doc)
|
315 |
|
316 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
|
317 |
-
|
318 |
try:
|
319 |
del vectorstore, splits
|
|
|
320 |
except:
|
321 |
print('no vectorstore found, initializing')
|
|
|
322 |
splits = text_splitter.split_documents(documents)
|
323 |
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
|
324 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": len(documents)})
|
|
|
27 |
from langchain.callbacks import FileCallbackHandler
|
28 |
from langchain.callbacks.manager import CallbackManager
|
29 |
from langchain.schema import Document
|
30 |
+
import chromadb
|
31 |
|
32 |
import instructor
|
33 |
from pydantic import BaseModel, Field
|
|
|
314 |
doc = Document(page_content=content, metadata=metadata)
|
315 |
documents.append(doc)
|
316 |
|
|
|
|
|
317 |
try:
|
318 |
del vectorstore, splits
|
319 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
320 |
except:
|
321 |
print('no vectorstore found, initializing')
|
322 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
|
323 |
splits = text_splitter.split_documents(documents)
|
324 |
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
|
325 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": len(documents)})
|