kiyer commited on
Commit
7f49cf4
·
verified ·
1 Parent(s): 2511aab

better fix for chromadb issue

Browse files

from here: https://github.com/langchain-ai/langchain/issues/26884

Files changed (1) hide show
  1. app_gradio.py +3 -2
app_gradio.py CHANGED
@@ -27,6 +27,7 @@ from langchain_core.output_parsers import StrOutputParser
27
  from langchain.callbacks import FileCallbackHandler
28
  from langchain.callbacks.manager import CallbackManager
29
  from langchain.schema import Document
 
30
 
31
  import instructor
32
  from pydantic import BaseModel, Field
@@ -313,12 +314,12 @@ def run_rag_qa(query, papers_df, question_type):
313
  doc = Document(page_content=content, metadata=metadata)
314
  documents.append(doc)
315
 
316
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
317
-
318
  try:
319
  del vectorstore, splits
 
320
  except:
321
  print('no vectorstore found, initializing')
 
322
  splits = text_splitter.split_documents(documents)
323
  vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
324
  retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": len(documents)})
 
27
  from langchain.callbacks import FileCallbackHandler
28
  from langchain.callbacks.manager import CallbackManager
29
  from langchain.schema import Document
30
+ import chromadb
31
 
32
  import instructor
33
  from pydantic import BaseModel, Field
 
314
  doc = Document(page_content=content, metadata=metadata)
315
  documents.append(doc)
316
 
 
 
317
  try:
318
  del vectorstore, splits
319
+ chromadb.api.client.SharedSystemClient.clear_system_cache()
320
  except:
321
  print('no vectorstore found, initializing')
322
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True)
323
  splits = text_splitter.split_documents(documents)
324
  vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings, collection_name='retdoc4')
325
  retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": len(documents)})