Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update api details
Browse files- pages/1_paper_search.py +0 -1
- pages/3_qa_sources.py +16 -14
pages/1_paper_search.py
CHANGED
@@ -13,7 +13,6 @@ import numpy as np
|
|
13 |
|
14 |
# openai.organization = st.secrets.openai.org
|
15 |
# openai.api_key = st.secrets.openai.api_key
|
16 |
-
st.write(st.secrets['openai'])
|
17 |
openai.organization = st.secrets["org"]
|
18 |
openai.api_key = st.secrets["api_key"]
|
19 |
os.environ["OPENAI_API_KEY"] = openai.api_key
|
|
|
13 |
|
14 |
# openai.organization = st.secrets.openai.org
|
15 |
# openai.api_key = st.secrets.openai.api_key
|
|
|
16 |
openai.organization = st.secrets["org"]
|
17 |
openai.api_key = st.secrets["api_key"]
|
18 |
os.environ["OPENAI_API_KEY"] = openai.api_key
|
pages/3_qa_sources.py
CHANGED
@@ -18,8 +18,10 @@ from langchain.document_loaders import TextLoader
|
|
18 |
from langchain.indexes import VectorstoreIndexCreator
|
19 |
API_ENDPOINT = "https://api.openai.com/v1/chat/completions"
|
20 |
|
21 |
-
openai.organization = st.secrets.openai.org
|
22 |
-
openai.api_key = st.secrets.openai.api_key
|
|
|
|
|
23 |
os.environ["OPENAI_API_KEY"] = openai.api_key
|
24 |
|
25 |
@st.cache_data
|
@@ -190,20 +192,20 @@ def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=
|
|
190 |
return response.json()["choices"][0]["message"]["content"]
|
191 |
else:
|
192 |
raise Exception(f"Error {response.status_code}: {response.text}")
|
193 |
-
|
194 |
-
|
195 |
model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
|
196 |
|
197 |
def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
|
198 |
-
|
199 |
show_authors = True
|
200 |
show_summary = True
|
201 |
-
sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
|
202 |
-
doc_id = query,
|
203 |
-
input_type='keywords',
|
204 |
-
show_authors = show_authors, show_summary = show_summary,
|
205 |
return_n = return_n)
|
206 |
-
|
207 |
temp_abst = ''
|
208 |
loaders = []
|
209 |
for i in range(len(absts)):
|
@@ -239,7 +241,7 @@ def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources =
|
|
239 |
textstr = ''
|
240 |
ng = len(output['sources'].split())
|
241 |
abs_indices = []
|
242 |
-
|
243 |
for i in range(ng):
|
244 |
if i == (ng-1):
|
245 |
tempid = output['sources'].split()[i].split('_')[1][0:-4]
|
@@ -271,13 +273,13 @@ def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources =
|
|
271 |
textstr = textstr + ' '
|
272 |
textstr = textstr + ' \n'
|
273 |
st.markdown(textstr)
|
274 |
-
|
275 |
fig = plt.figure(figsize=(9,9))
|
276 |
plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
|
277 |
plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
|
278 |
plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
|
279 |
st.pyplot(fig)
|
280 |
-
|
281 |
if show_all_sources == True:
|
282 |
st.markdown('\n #### Other interesting papers:')
|
283 |
st.markdown(sims)
|
@@ -289,4 +291,4 @@ st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. Please
|
|
289 |
query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
|
290 |
return_n = st.slider('How many papers should I show?', 1, 20, 10)
|
291 |
|
292 |
-
sims = run_query(query, return_n = return_n)
|
|
|
18 |
from langchain.indexes import VectorstoreIndexCreator
|
19 |
API_ENDPOINT = "https://api.openai.com/v1/chat/completions"
|
20 |
|
21 |
+
# openai.organization = st.secrets.openai.org
|
22 |
+
# openai.api_key = st.secrets.openai.api_key
|
23 |
+
openai.organization = st.secrets["org"]
|
24 |
+
openai.api_key = st.secrets["api_key"]
|
25 |
os.environ["OPENAI_API_KEY"] = openai.api_key
|
26 |
|
27 |
@st.cache_data
|
|
|
192 |
return response.json()["choices"][0]["message"]["content"]
|
193 |
else:
|
194 |
raise Exception(f"Error {response.status_code}: {response.text}")
|
195 |
+
|
196 |
+
|
197 |
model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
|
198 |
|
199 |
def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
|
200 |
+
|
201 |
show_authors = True
|
202 |
show_summary = True
|
203 |
+
sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
|
204 |
+
doc_id = query,
|
205 |
+
input_type='keywords',
|
206 |
+
show_authors = show_authors, show_summary = show_summary,
|
207 |
return_n = return_n)
|
208 |
+
|
209 |
temp_abst = ''
|
210 |
loaders = []
|
211 |
for i in range(len(absts)):
|
|
|
241 |
textstr = ''
|
242 |
ng = len(output['sources'].split())
|
243 |
abs_indices = []
|
244 |
+
|
245 |
for i in range(ng):
|
246 |
if i == (ng-1):
|
247 |
tempid = output['sources'].split()[i].split('_')[1][0:-4]
|
|
|
273 |
textstr = textstr + ' '
|
274 |
textstr = textstr + ' \n'
|
275 |
st.markdown(textstr)
|
276 |
+
|
277 |
fig = plt.figure(figsize=(9,9))
|
278 |
plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
|
279 |
plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
|
280 |
plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
|
281 |
st.pyplot(fig)
|
282 |
+
|
283 |
if show_all_sources == True:
|
284 |
st.markdown('\n #### Other interesting papers:')
|
285 |
st.markdown(sims)
|
|
|
291 |
query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
|
292 |
return_n = st.slider('How many papers should I show?', 1, 20, 10)
|
293 |
|
294 |
+
sims = run_query(query, return_n = return_n)
|