kiyer commited on
Commit
e35afc0
1 Parent(s): 8c1b1ae

update api details

Browse files
Files changed (2) hide show
  1. pages/1_paper_search.py +0 -1
  2. pages/3_qa_sources.py +16 -14
pages/1_paper_search.py CHANGED
@@ -13,7 +13,6 @@ import numpy as np
13
 
14
  # openai.organization = st.secrets.openai.org
15
  # openai.api_key = st.secrets.openai.api_key
16
- st.write(st.secrets['openai'])
17
  openai.organization = st.secrets["org"]
18
  openai.api_key = st.secrets["api_key"]
19
  os.environ["OPENAI_API_KEY"] = openai.api_key
 
13
 
14
  # openai.organization = st.secrets.openai.org
15
  # openai.api_key = st.secrets.openai.api_key
 
16
  openai.organization = st.secrets["org"]
17
  openai.api_key = st.secrets["api_key"]
18
  os.environ["OPENAI_API_KEY"] = openai.api_key
pages/3_qa_sources.py CHANGED
@@ -18,8 +18,10 @@ from langchain.document_loaders import TextLoader
18
  from langchain.indexes import VectorstoreIndexCreator
19
  API_ENDPOINT = "https://api.openai.com/v1/chat/completions"
20
 
21
- openai.organization = st.secrets.openai.org
22
- openai.api_key = st.secrets.openai.api_key
 
 
23
  os.environ["OPENAI_API_KEY"] = openai.api_key
24
 
25
  @st.cache_data
@@ -190,20 +192,20 @@ def generate_chat_completion(messages, model="gpt-4", temperature=1, max_tokens=
190
  return response.json()["choices"][0]["message"]["content"]
191
  else:
192
  raise Exception(f"Error {response.status_code}: {response.text}")
193
-
194
-
195
  model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
196
 
197
  def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
198
-
199
  show_authors = True
200
  show_summary = True
201
- sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
202
- doc_id = query,
203
- input_type='keywords',
204
- show_authors = show_authors, show_summary = show_summary,
205
  return_n = return_n)
206
-
207
  temp_abst = ''
208
  loaders = []
209
  for i in range(len(absts)):
@@ -239,7 +241,7 @@ def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources =
239
  textstr = ''
240
  ng = len(output['sources'].split())
241
  abs_indices = []
242
-
243
  for i in range(ng):
244
  if i == (ng-1):
245
  tempid = output['sources'].split()[i].split('_')[1][0:-4]
@@ -271,13 +273,13 @@ def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources =
271
  textstr = textstr + ' '
272
  textstr = textstr + ' \n'
273
  st.markdown(textstr)
274
-
275
  fig = plt.figure(figsize=(9,9))
276
  plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
277
  plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
278
  plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
279
  st.pyplot(fig)
280
-
281
  if show_all_sources == True:
282
  st.markdown('\n #### Other interesting papers:')
283
  st.markdown(sims)
@@ -289,4 +291,4 @@ st.markdown('Concise answers for questions using arxiv abstracts + GPT-4. Please
289
  query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
290
  return_n = st.slider('How many papers should I show?', 1, 20, 10)
291
 
292
- sims = run_query(query, return_n = return_n)
 
18
  from langchain.indexes import VectorstoreIndexCreator
19
  API_ENDPOINT = "https://api.openai.com/v1/chat/completions"
20
 
21
+ # openai.organization = st.secrets.openai.org
22
+ # openai.api_key = st.secrets.openai.api_key
23
+ openai.organization = st.secrets["org"]
24
+ openai.api_key = st.secrets["api_key"]
25
  os.environ["OPENAI_API_KEY"] = openai.api_key
26
 
27
  @st.cache_data
 
192
  return response.json()["choices"][0]["message"]["content"]
193
  else:
194
  raise Exception(f"Error {response.status_code}: {response.text}")
195
+
196
+
197
  model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]
198
 
199
  def run_query(query, return_n = 3, show_pure_answer = False, show_all_sources = True):
200
+
201
  show_authors = True
202
  show_summary = True
203
+ sims, absts, fhdrs, simids = list_similar_papers_v2(model_data,
204
+ doc_id = query,
205
+ input_type='keywords',
206
+ show_authors = show_authors, show_summary = show_summary,
207
  return_n = return_n)
208
+
209
  temp_abst = ''
210
  loaders = []
211
  for i in range(len(absts)):
 
241
  textstr = ''
242
  ng = len(output['sources'].split())
243
  abs_indices = []
244
+
245
  for i in range(ng):
246
  if i == (ng-1):
247
  tempid = output['sources'].split()[i].split('_')[1][0:-4]
 
273
  textstr = textstr + ' '
274
  textstr = textstr + ' \n'
275
  st.markdown(textstr)
276
+
277
  fig = plt.figure(figsize=(9,9))
278
  plt.scatter(e2d[0:,0], e2d[0:,1],s=2)
279
  plt.scatter(e2d[simids,0], e2d[simids,1],s=30)
280
  plt.scatter(e2d[abs_indices,0], e2d[abs_indices,1],s=100,color='k',marker='d')
281
  st.pyplot(fig)
282
+
283
  if show_all_sources == True:
284
  st.markdown('\n #### Other interesting papers:')
285
  st.markdown(sims)
 
291
  query = st.text_input('Your question here:', value="What sersic index does a disk galaxy have?")
292
  return_n = st.slider('How many papers should I show?', 1, 20, 10)
293
 
294
+ sims = run_query(query, return_n = return_n)