import streamlit as st st.set_page_config(layout="wide") openai_key = st.secrets["openai_key"] cohere_key = st.secrets['cohere_key'] import numpy as np from abc import ABC, abstractmethod from typing import List, Dict, Any, Tuple from collections import defaultdict from tqdm import tqdm import pandas as pd from datetime import datetime, date from datasets import load_dataset, load_from_disk from collections import Counter import yaml, json, requests, sys, os, time import concurrent.futures from langchain import hub from langchain_openai import ChatOpenAI as openai_llm from langchain_openai import OpenAIEmbeddings from langchain_core.runnables import RunnableConfig, RunnablePassthrough, RunnableParallel from langchain_core.prompts import PromptTemplate from langchain_community.callbacks import StreamlitCallbackHandler from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import TextLoader from langchain.agents import create_react_agent, Tool, AgentExecutor from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_core.output_parsers import StrOutputParser from langchain.callbacks import FileCallbackHandler from langchain.callbacks.manager import CallbackManager from langchain.schema import Document import instructor from pydantic import BaseModel, Field from typing import List, Literal from nltk.corpus import stopwords import nltk from openai import OpenAI # import anthropic import cohere import faiss import spacy from string import punctuation import pytextrank from prompts import * ts = time.time() @st.cache_resource def load_nlp(): nlp = spacy.load("en_core_web_sm") nlp.add_pipe("textrank") try: stopwords.words('english') except: nltk.download('stopwords') stopwords.words('english') return nlp # @st.cache_resource # def load_embeddings(): # return OpenAIEmbeddings(model="text-embedding-3-small", api_key=st.secrets["openai_key"]) # # @st.cache_resource # def load_llm(): # return ChatOpenAI(temperature=0, model_name='gpt-4o-mini', openai_api_key=st.secrets["openai_key"]) st.session_state.gen_llm = openai_llm(temperature=0, model_name='gpt-4o-mini', openai_api_key = openai_key) st.session_state.consensus_client = instructor.patch(OpenAI(api_key=openai_key)) st.session_state.embed_client = OpenAI(api_key = openai_key) embed_model = "text-embedding-3-small" st.session_state.embeddings = OpenAIEmbeddings(model = embed_model, api_key = openai_key) # @st.cache_data def load_arxiv_corpus(): with st.spinner('loading astro-ph corpus'): arxiv_corpus = load_from_disk('data/') arxiv_corpus.load_faiss_index('embed', 'data/astrophindex.faiss') st.toast('loaded data. time taken: %.2f sec' %(time.time()-ts)) return arxiv_corpus def get_keywords(text): result = [] pos_tag = ['PROPN', 'ADJ', 'NOUN'] if 'nlp' not in st.session_state: st.session_state.nlp = load_nlp() doc = st.session_state.nlp(text.lower()) for token in doc: if(token.text in st.session_state.nlp.Defaults.stop_words or token.text in punctuation): continue if(token.pos_ in pos_tag): result.append(token.text) return result class RetrievalSystem(): def __init__(self): self.dataset = st.session_state.arxiv_corpus self.client = OpenAI(api_key = openai_key) self.embed_model = "text-embedding-3-small" self.generation_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) self.hyde_client = openai_llm(temperature=0.5,model_name='gpt-4o-mini', openai_api_key = openai_key) self.cohere_client = cohere.Client(cohere_key) def make_embedding(self, text): str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding return str_embed def embed_batch(self, texts: List[str]) -> List[np.ndarray]: embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings] def get_query_embedding(self, query): return self.make_embedding(query) def calc_faiss(self, query_embedding, top_k = 100): # xq = query_embedding.reshape(-1,1).T.astype('float32') # D, I = self.index.search(xq, top_k) # return I[0], D[0] tmp = self.dataset.search('embed', query_embedding, k=top_k) return [tmp.indices, tmp.scores, self.dataset[tmp.indices]] def rank_and_filter(self, query, query_embedding, top_k = 10, top_k_internal = 1000, return_scores=False): self.weight_keywords = self.toggles["Keyword weighting"] self.weight_date = self.toggles["Time weighting"] self.weight_citation = self.toggles["Citation weighting"] topk_indices, similarities, small_corpus = self.calc_faiss(np.array(query_embedding), top_k = top_k_internal) similarities = 1/similarities # converting from a distance (less is better) to a similarity (more is better) if self.weight_keywords == True: query_kws = get_keywords(query) input_kws = self.query_input_keywords query_kws = query_kws + input_kws self.query_kws = query_kws sub_kws = [small_corpus['keywords'][i] for i in range(top_k_internal)] kw_weight = np.zeros((len(topk_indices),)) + 0.1 for k in query_kws: for i in (range(len(topk_indices))): for j in range(len(sub_kws[i])): if k.lower() in sub_kws[i][j].lower(): kw_weight[i] = kw_weight[i] + 0.1 # print(i, k, sub_kws[i][j]) # kw_weight = kw_weight**0.36 / np.amax(kw_weight**0.36) kw_weight = kw_weight / np.amax(kw_weight) else: kw_weight = np.ones((len(topk_indices),)) if self.weight_date == True: sub_dates = [small_corpus['date'][i] for i in range(top_k_internal)] date = datetime.now().date() date_diff = np.array([((date - i).days / 365.) for i in sub_dates]) # age_weight = (1 + np.exp(date_diff/2.1))**(-1) + 0.5 age_weight = (1 + np.exp(date_diff/0.7))**(-1) age_weight = age_weight / np.amax(age_weight) else: age_weight = np.ones((len(topk_indices),)) if self.weight_citation == True: # st.write('weighting by citations') sub_cites = np.array([small_corpus['cites'][i] for i in range(top_k_internal)]) temp = sub_cites.copy() temp[sub_cites > 300] = 300. cite_weight = (1 + np.exp((300-temp)/42.0))**(-1.) cite_weight = cite_weight / np.amax(cite_weight) else: cite_weight = np.ones((len(topk_indices),)) similarities = similarities * (kw_weight) * (age_weight) * (cite_weight) filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))] top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k] top_scores = [doc[1] for doc in top_results] top_indices = [doc[0] for doc in top_results] small_df = self.dataset[top_indices] if return_scores: return {doc[0]: doc[1] for doc in top_results}, small_df # Only keep the document IDs top_results = [doc[0] for doc in top_results] return top_results, small_df def generate_doc(self, query: str): prompt = """You are an expert astronomer. Given a scientific query, generate the abstract of an expert-level research paper that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion. Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen) messages = [("system",prompt,),("human", query),] return self.hyde_client.invoke(messages).content def generate_docs(self, query: str): docs = [] for i in range(self.generate_n): docs.append(self.generate_doc(query)) return docs def embed_docs(self, docs: List[str]): return self.embed_batch(docs) def retrieve(self, query, top_k, return_scores = False, embed_query=True, max_doclen=250, generate_n=1, temperature=0.5, rerank_top_k = 250): if max_doclen * generate_n > 8191: raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.") query_embedding = self.get_query_embedding(query) if self.hyde == True: self.max_doclen = max_doclen self.generate_n = generate_n self.hyde_client.temperature = temperature self.embed_query = embed_query docs = self.generate_docs(query) st.expander('Abstract generated with hyde', expanded=False).write(docs) doc_embeddings = self.embed_docs(docs) if self.embed_query: query_emb = self.embed_docs([query])[0] doc_embeddings.append(query_emb) query_embedding = np.mean(np.array(doc_embeddings), axis = 0) if self.rerank == True: top_results, small_df = self.rank_and_filter(query, query_embedding, rerank_top_k, return_scores = False) try: docs_for_rerank = [small_df['abstract'][i] for i in range(rerank_top_k)] if len(docs_for_rerank) == 0: return [] reranked_results = self.cohere_client.rerank( query=query, documents=docs_for_rerank, model='rerank-english-v3.0', top_n=top_k ) final_results = [] for result in reranked_results.results: doc_id = top_results[result.index] doc_text = docs_for_rerank[result.index] score = float(result.relevance_score) final_results.append([doc_id, "", score]) final_indices = [doc[0] for doc in final_results] if return_scores: return {result[0]: result[2] for result in final_results}, self.dataset[final_indices] return [doc[0] for doc in final_results], self.dataset[final_indices] except: print('heavy load, please wait 10s and try again.') else: top_results, small_df = self.rank_and_filter(query, query_embedding, top_k, return_scores = return_scores) return top_results, small_df def return_formatted_df(self, top_results, small_df): df = pd.DataFrame(small_df) df = df.drop(columns=['umap_x','umap_y','cite_bibcodes','ref_bibcodes']) links = ['https://ui.adsabs.harvard.edu/abs/'+i+'/abstract' for i in small_df['bibcode']] scores = [top_results[i] for i in top_results] indices = [i for i in top_results] df.insert(1,'ADS Link',links,True) df.insert(2,'Relevance',scores,True) df.insert(3,'Indices',indices,True) df = df[['ADS Link','Relevance','date','cites','title','authors','abstract','keywords','ads_id','Indices','embed']] df.index += 1 return df # @st.cache_resource def load_ret_system(): with st.spinner('loading retrieval system...'): ec = RetrievalSystem() st.toast('loaded retrieval system. time taken: %.2f sec' %(time.time()-ts)) return ec st.image('local_files/pathfinder_logo.png') st.expander("What is Pathfinder / How do I use it?", expanded=False).write( """ Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts. This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things. **👈 Use the sidebar to tweak the search parameters to get better results**. ### Tool summary: - Please wait while the initial data loads and compiles, this takes about a minute initially. This is not meant to be a replacement to existing tools like the [ADS](https://ui.adsabs.harvard.edu/), [arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers that otherwise might be missed during a literature survey. It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata, if you are interested in extending it please reach out! Also add: feedback form, socials, literature, contact us, copyright, collaboration, etc. The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an atlas that shows well studied (forests) and currently uncharted areas (water). """ ) st.sidebar.header("Fine-tune the search") top_k = st.sidebar.slider("Number of papers to retrieve:", 1, 30, 10) extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):") keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else [] st.sidebar.subheader("Toggles") toggle_a = st.sidebar.toggle("Weight by keywords", value = False) toggle_b = st.sidebar.toggle("Weight by date", value = False) toggle_c = st.sidebar.toggle("Weight by citations", value = False) toggles = {'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c} method = st.sidebar.radio("Retrieval method:", ["Semantic search", "Semantic search + HyDE", "Semantic search + HyDE + CoHERE"], index=2) method2 = st.sidebar.radio("Generation complexity:", ["Basic RAG","ReAct Agent"]) st.session_state.top_k = top_k st.session_state.keywords = keywords st.session_state.toggles = toggles st.session_state.method = method st.session_state.method2 = method2 if (method == "Semantic search"): st.session_state.hyde = False st.session_state.cohere = False elif (method == "Semantic search + HyDE"): st.session_state.hyde = True st.session_state.cohere = False elif (method == "Semantic search + HyDE + CoHERE"): st.session_state.hyde = True st.session_state.cohere = True if method2 == "Basic RAG": st.session_state.gen_method = 'rag' elif method2 == "ReAct Agent": st.session_state.gen_method = 'agent' question_type = st.sidebar.selectbox("Prompt specialization:", ["Multi-paper (Default)", "Single-paper", "Bibliometric", "Broad but nuanced"]) st.session_state.question_type = question_type # store_output = st.sidebar.button("Save output") query = st.text_input("Ask me anything:") st.session_state.query = query st.write(query) submit_button = st.button("Run pathfinder!", key='runpfdr') search_text_list = ['rooting around in the paper pile...','looking for clarity...','scanning the event horizon...','peering into the abyss...','potatoes power this ongoing search...'] gen_text_list = ['making the LLM talk to the papers...','invoking arcane rituals...','gone to library, please wait...','is there really an answer to this...'] if 'arxiv_corpus' not in st.session_state: st.session_state.arxiv_corpus = load_arxiv_corpus() # @st.fragment() def run_query_ret(query): tr = time.time() ec = load_ret_system() ec.query_input_keywords = st.session_state.keywords ec.toggles = st.session_state.toggles ec.hyde = st.session_state.hyde ec.rerank = st.session_state.cohere rs, small_df = ec.retrieve(query, top_k = st.session_state.top_k, return_scores=True) formatted_df = ec.return_formatted_df(rs, small_df) st.toast('got top-k papers. time taken: %.2f sec' %(time.time()-tr)) return formatted_df def Library(query): papers_df = run_query_ret(st.session_state.query) op_docs = '' for i in range(len(papers_df)): op_docs = op_docs + 'Paper %.0f:' %(i+1) + papers_df['title'][i] + '\n' + papers_df['abstract'][i] + '\n\n' return op_docs def run_agent_qa(query): search = DuckDuckGoSearchAPIWrapper() tools = [ Tool( name="Library", func=Library, description="A source of information pertinent to your question. Do not answer a question without consulting this!" ), Tool( name="Search", func=search.run, description="useful for when you need to look up knowledge about common topics or current events", ) ] if 'tools' not in st.session_state: st.session_state.tools = tools prompt = hub.pull("hwchase17/react") prompt.template = react_prompt file_path = "agent_trace.txt" try: os.remove(file_path) except: pass file_handler = FileCallbackHandler(file_path) callback_manager=CallbackManager([file_handler]) tool_names = [tool.name for tool in st.session_state.tools] if 'agent' not in st.session_state: # agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names) agent = create_react_agent(llm=st.session_state.gen_llm, tools=tools, prompt=prompt) st.session_state.agent = agent if 'agent_executor' not in st.session_state: agent_executor = AgentExecutor(agent=st.session_state.agent, tools=st.session_state.tools, verbose=True, handle_parsing_errors=True, callbacks=CallbackManager([file_handler])) st.session_state.agent_executor = agent_executor answer = st.session_state.agent_executor.invoke({"input": query,}) return answer def run_rag_qa(query, papers_df): try: loaders = [] documents = [] my_bar = st.progress(0, text='adding documents to LLM context') for i, row in papers_df.iterrows(): content = f"Paper {i+1}: {row['title']}\n{row['abstract']}\n\n" metadata = {"source": row['ads_id']} doc = Document(page_content=content, metadata=metadata) documents.append(doc) my_bar.progress((i+1)/len(papers_df), text='adding documents to LLM context') text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50, add_start_index=True) splits = text_splitter.split_documents(documents) vectorstore = Chroma.from_documents(documents=splits, embedding=st.session_state.embeddings, collection_name='retdoc4') # retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6, "fetch_k": len(splits)}) retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6}) if st.session_state.question_type == 'Bibliometric': template = bibliometric_prompt elif st.session_state.question_type == 'Single-paper': template = single_paper_prompt elif st.session_state.question_type == 'Broad but nuanced': template = deep_knowledge_prompt else: template = regular_prompt prompt = PromptTemplate.from_template(template) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain_from_docs = ( RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"]))) | prompt | st.session_state.gen_llm | StrOutputParser() ) rag_chain_with_source = RunnableParallel( {"context": retriever, "question": RunnablePassthrough()} ).assign(answer=rag_chain_from_docs) rag_answer = rag_chain_with_source.invoke(query, ) vectorstore.delete_collection() except: st.subheader('heavy load! please wait 10 seconds and try again.') return rag_answer def guess_question_type(query: str): gen_client = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key) messages = [("system",question_categorization_prompt,),("human", query),] return gen_client.invoke(messages).content class OverallConsensusEvaluation(BaseModel): consensus: Literal["Strong Agreement", "Moderate Agreement", "Weak Agreement", "No Clear Consensus", "Weak Disagreement", "Moderate Disagreement", "Strong Disagreement"] = Field( ..., description="The overall level of consensus between the query and the abstracts" ) explanation: str = Field( ..., description="A detailed explanation of the consensus evaluation" ) relevance_score: float = Field( ..., description="A score from 0 to 1 indicating how relevant the abstracts are to the query overall", ge=0, le=1 ) def evaluate_overall_consensus(query: str, abstracts: List[str]) -> OverallConsensusEvaluation: """ Evaluates the overall consensus of the abstracts in relation to the query in a single LLM call. """ prompt = f""" Query: {query} You will be provided with {len(abstracts)} scientific abstracts. Your task is to: 1. Evaluate the overall consensus between the query and the abstracts. 2. Provide a detailed explanation of your consensus evaluation. 3. Assign an overall relevance score from 0 to 1, where 0 means completely irrelevant and 1 means highly relevant. For the consensus evaluation, use one of the following levels: Strong Agreement, Moderate Agreement, Weak Agreement, No Clear Consensus, Weak Disagreement, Moderate Disagreement, Strong Disagreement Here are the abstracts: {' '.join([f"Abstract {i+1}: {abstract}" for i, abstract in enumerate(abstracts)])} Provide your evaluation in a structured format. """ response = st.session_state.consensus_client.chat.completions.create( model="gpt-4o-mini", # used to be "gpt-4", response_model=OverallConsensusEvaluation, messages=[ {"role": "system", "content": """You are an assistant with expertise in astrophysics for question-answering tasks. Evaluate the overall consensus of the retrieved scientific abstracts in relation to a given query. If you don't know the answer, just say that you don't know. Use six sentences maximum and keep the answer concise."""}, {"role": "user", "content": prompt} ], temperature=0 ) return response def calc_outlier_flag(papers_df, top_k, cutoff_adjust = 0.1): cut_dist = np.load('pfdr_arxiv_cutoff_distances.npy') - cutoff_adjust pts = np.array(papers_df['embed'].tolist()) centroid = np.mean(pts,0) dists = np.sqrt(np.sum((pts-centroid)**2,1)) outlier_flag = (dists > cut_dist[top_k-1]) return outlier_flag def make_embedding_plot(papers_df, consensus_answer): plt_indices = np.array(papers_df['Indices'].tolist()) if 'arxiv_corpus' not in st.session_state: st.session_state.arxiv_corpus = load_arxiv_corpus() xax = np.array(st.session_state.arxiv_corpus['umap_x']) yax = np.array(st.session_state.arxiv_corpus['umap_y']) outlier_flag = calc_outlier_flag(papers_df, top_k, cutoff_adjust=0.25) alphas = np.ones((len(plt_indices),)) * 0.9 alphas[outlier_flag] = 0.5 fig = plt.figure(figsize=(9,12)) plt.scatter(xax,yax, s=1, alpha=0.01, c='k') plt.scatter(xax[plt_indices], yax[plt_indices], s=300*alphas**2, alpha=alphas, c='w') plt.scatter(xax[plt_indices], yax[plt_indices], s=100*alphas**2, alpha=alphas, c='dodgerblue') # plt.scatter(xax[plt_indices][outlier_flag], yax[plt_indices][outlier_flag], s=100, alpha=1., c='firebrick') plt.axis([0,20,-4.2,18]) plt.axis('off') plt.title('Query: '+st.session_state.query+'\n'+r'N$_{\rm outliers}: %.0f/%.0f$, Consensus: ' %(np.sum(outlier_flag), len(outlier_flag)) + consensus_answer.consensus + ' (%.1f)' %consensus_answer.relevance_score) st.pyplot(fig) # --------------------------------------- if st.session_state.get('runpfdr'): with st.spinner(search_text_list[np.random.choice(len(search_text_list))]): st.write('Settings: [Kw:',toggle_a, 'Time:',toggle_b, 'Cite:',toggle_c, '] top_k:',top_k, 'retrieval:',method) papers_df = run_query_ret(st.session_state.query) st.header(st.session_state.query) st.subheader('top-k relevant papers:') st.data_editor(papers_df, column_config = {'ADS Link':st.column_config.LinkColumn(display_text= 'https://ui.adsabs.harvard.edu/abs/(.*?)/abstract')}) with st.spinner(gen_text_list[np.random.choice(len(gen_text_list))]): if st.session_state.gen_method == 'agent': answer = run_agent_qa(st.session_state.query) answer_text = answer['output'] st.subheader('Answer with '+method2) st.write(answer_text) file_path = "agent_trace.txt" with open(file_path, 'r') as file: intermediate_steps = file.read() st.expander('Intermediate steps', expanded=False).write(intermediate_steps) elif st.session_state.gen_method == 'rag': answer = run_rag_qa(query, papers_df) st.subheader('Answer with '+method2) answer_text = answer['answer'] st.write(answer_text) query_kws = get_keywords(query) input_kws = st.session_state.keywords query_kws = query_kws + input_kws triggered_keywords = query_kws + input_kws st.write('**Triggered keywords:** `'+ "`, `".join(triggered_keywords)+'`') col1, col2 = st.columns(2) with col1: with st.spinner("Evaluating question type"): with st.expander("Question type", expanded=True): st.subheader("Question type suggestion") question_type_gen = guess_question_type(query) if '' in question_type_gen: question_type_gen = question_type_gen.split('')[1] if '' in question_type_gen: question_type_gen = question_type_gen.split('')[0] question_type_gen = question_type_gen.replace('\n',' \n') st.markdown(question_type_gen) with st.spinner("Evaluating abstract consensus"): with st.expander("Abstract consensus", expanded=True): consensus_answer = evaluate_overall_consensus(query, [papers_df['abstract'][i] for i in range(len(papers_df))]) st.subheader("Consensus: "+consensus_answer.consensus) st.markdown(consensus_answer.explanation) st.markdown('Relevance of retrieved papers to answer: %.1f' %consensus_answer.relevance_score) with col2: make_embedding_plot(papers_df, consensus_answer) session_vars = { "runtime": "pathfinder_v1_online", "query": query, "question_type": question_type, 'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c, "rag_method" : method, "gen_method" : method2, "answer" : answer_text, "question_type": question_type_gen, "consensus": consensus_answer.explanation, "topk" : list(papers_df['ads_id']), "topk_scores" : list(papers_df['Relevance']), "topk_papers": list(papers_df['ADS Link']), } @st.fragment() def download_op(data): json_string = json.dumps(data) st.download_button( label='Download output', file_name="pathfinder_data.json", mime="application/json", data=json_string,) # with st.sidebar: download_op(session_vars) else: st.info("Use the sidebar to tweak the search parameters to get better results.")