File size: 8,231 Bytes
fe4a4f7
 
 
 
 
 
 
 
 
237026a
fe4a4f7
 
 
 
8ac24c6
 
 
 
fe4a4f7
 
 
 
237026a
 
 
 
 
fe4a4f7
 
 
 
237026a
 
 
 
 
 
fe4a4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237026a
fe4a4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import datetime, os
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
import openai
import faiss
import streamlit as st
import feedparser
import urllib
import cloudpickle as cp
import pickle
from urllib.request import urlopen
from summa import summarizer
import numpy as np

# openai.organization = st.secrets.openai.org
# openai.api_key = st.secrets.openai.api_key
openai.organization = st.secrets["org"]
openai.api_key = st.secrets["api_key"]
os.environ["OPENAI_API_KEY"] = openai.api_key

@st.cache_data
def get_feeds_data(url):
    with open(url, "rb") as fp:
        data = pickle.load(fp)
    st.sidebar.success("Loaded data!")
    # data = cp.load(urlopen(url))
    # st.sidebar.success("Fetched data from API!")
    return data

embeddings = OpenAIEmbeddings()

# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"

dateval = "27-Jun-2023"
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
gal_feeds = get_feeds_data(feeds_link)
arxiv_ada_embeddings = get_feeds_data(embed_link)

ctr = -1
num_chunks = len(gal_feeds)
all_text, all_titles, all_arxivid, all_links, all_authors = [], [], [], [], []

for nc in range(num_chunks):

    for i in range(len(gal_feeds[nc].entries)):
        text = gal_feeds[nc].entries[i].summary
        text = text.replace('\n', ' ')
        text = text.replace('\\', '')
        all_text.append(text)
        all_titles.append(gal_feeds[nc].entries[i].title)
        all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
        all_links.append(gal_feeds[nc].entries[i].links[1].href)
        all_authors.append(gal_feeds[nc].entries[i].authors)

d = arxiv_ada_embeddings.shape[1]                           # dimension
nb = arxiv_ada_embeddings.shape[0]                      # database size
xb = arxiv_ada_embeddings.astype('float32')
index = faiss.IndexFlatL2(d)
index.add(xb)

def run_simple_query(search_query = 'all:sed+fitting', max_results = 10, start = 0, sort_by = 'lastUpdatedDate', sort_order = 'descending'):
    """
        Query ArXiv to return search results for a particular query
        Parameters
        ----------
        query: str
            query term. use prefixes ti, au, abs, co, jr, cat, m, id, all as applicable.
        max_results: int, default = 10
            number of results to return. numbers > 1000 generally lead to timeouts
        start: int, default = 0
            start index for results reported. use this if you're interested in running chunks.
        Returns
        -------
        feed: dict
            object containing requested results parsed with feedparser
        Notes
        -----
            add functionality for chunk parsing, as well as storage and retreival
        """

    # Base api query url
    base_url = 'http://export.arxiv.org/api/query?';
    query = 'search_query=%s&start=%i&max_results=%i&sortBy=%s&sortOrder=%s' % (search_query,
                                                     start,
                                                     max_results,sort_by,sort_order)

    response = urllib.request.urlopen(base_url+query).read()
    feed = feedparser.parse(response)
    return feed

def find_papers_by_author(auth_name):

    doc_ids = []
    for doc_id in range(len(all_authors)):
        for auth_id in range(len(all_authors[doc_id])):
            if auth_name.lower() in all_authors[doc_id][auth_id]['name'].lower():
                print('Doc ID: ',doc_id, ' | arXiv: ', all_arxivid[doc_id], '| ', all_titles[doc_id],' | Author entry: ', all_authors[doc_id][auth_id]['name'])
                doc_ids.append(doc_id)

    return doc_ids

def faiss_based_indices(input_vector, nindex=10):
    xq = input_vector.reshape(-1,1).T.astype('float32')
    D, I = index.search(xq, nindex)
    return I[0], D[0]


def list_similar_papers_v2(model_data,
                        doc_id = [], input_type = 'doc_id',
                        show_authors = False, show_summary = False,
                        return_n = 10):

    arxiv_ada_embeddings, embeddings, all_titles, all_abstracts, all_authors = model_data

    if input_type == 'doc_id':
        print('Doc ID: ',doc_id,', title: ',all_titles[doc_id])
#         inferred_vector = model.infer_vector(train_corpus[doc_id].words)
        inferred_vector = arxiv_ada_embeddings[doc_id,0:]
        start_range = 1
    elif input_type == 'arxiv_id':
        print('ArXiv id: ',doc_id)
        arxiv_query_feed = run_simple_query(search_query='id:'+str(doc_id))
        if len(arxiv_query_feed.entries) == 0:
            print('error: arxiv id not found.')
            return
        else:
            print('Title: '+arxiv_query_feed.entries[0].title)
            inferred_vector = np.array(embeddings.embed_query(arxiv_query_feed.entries[0].summary))
#         arxiv_query_tokens = gensim.utils.simple_preprocess(arxiv_query_feed.entries[0].summary)
#         inferred_vector = model.infer_vector(arxiv_query_tokens)

        start_range = 0
    elif input_type == 'keywords':
#         print('Keyword(s): ',[doc_id[i] for i in range(len(doc_id))])
#         word_vector = model.wv[doc_id[0]]
#         if len(doc_id) > 1:
#            print('multi-keyword')
#            for i in range(1,len(doc_id)):
#                word_vector = word_vector + model.wv[doc_id[i]]
# #         word_vector = model.infer_vector(doc_id)
#         inferred_vector = word_vector
        inferred_vector = np.array(embeddings.embed_query(doc_id))
        start_range = 0
    else:
        print('unrecognized input type.')
        return

#     sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs))
    sims, dists = faiss_based_indices(inferred_vector, return_n+2)
    textstr = ''

    textstr = textstr + '-----------------------------\n'
    textstr = textstr + 'Most similar/relevant papers: \n'
    textstr = textstr + '-----------------------------\n\n'
    for i in range(start_range,start_range+return_n):

        # print(i, all_titles[sims[i]], ' (Distance: %.2f' %dists[i] ,')')
        textstr = textstr + str(i+1)+'. **'+ all_titles[sims[i]] +'** (Distance: %.2f' %dists[i]+')   \n'
        textstr = textstr + '**ArXiv:** ['+all_arxivid[sims[i]]+'](https://arxiv.org/abs/'+all_arxivid[sims[i]]+')  \n'
        if show_authors == True:
            textstr = textstr + '**Authors:**  '
            temp = all_authors[sims[i]]
            for ak in range(len(temp)):
                if ak < len(temp)-1:
                    textstr = textstr + temp[ak].name + ', '
                else:
                    textstr = textstr + temp[ak].name + '   \n'
        if show_summary == True:
            textstr = textstr + '**Summary:**  '
            text = all_text[sims[i]]
            text = text.replace('\n', ' ')
            textstr = textstr + summarizer.summarize(text) + '  \n'
        if show_authors == True or show_summary == True:
            textstr = textstr + ' '
        textstr = textstr + '  \n'
    return textstr


model_data = [arxiv_ada_embeddings, embeddings, all_titles, all_text, all_authors]

st.title('ArXiv similarity search:')
st.markdown('Search for similar papers by arxiv id or phrase:')
st.markdown('[Includes papers up to: `'+dateval+'`]')

search_type = st.radio(
    "What are you searching by?",
    ('arxiv id', 'text query'), index=1)

query = st.text_input('Search query or arxivid', value="what causes galaxy quenching?")
show_authors = st.checkbox('Show author information', value = True)
show_summary = st.checkbox('Show paper summary', value = True)
return_n = st.slider('How many papers should I show?', 1, 30, 10)

if search_type == 'arxiv id':
    sims = list_similar_papers_v2(model_data, doc_id = query, input_type='arxiv_id', show_authors = show_authors, show_summary = show_summary, return_n = return_n)
else:
    sims = list_similar_papers_v2(model_data, doc_id = query, input_type='keywords', show_authors = show_authors, show_summary = show_summary, return_n = return_n)

st.markdown(sims)