Spaces:
Runtime error
Runtime error
added time window applet
Browse files- .DS_Store +0 -0
- .gitignore +2 -0
- app.py +3 -1
- pages/5_research_hotspots.py +129 -0
- pages/{5_qa_sources_v1.py → 6_qa_sources_v1.py} +0 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.DS_Store
|
app.py
CHANGED
@@ -22,7 +22,9 @@ st.markdown(
|
|
22 |
### Tool summary:
|
23 |
- `Paper search` looks for relevant papers given an arxiv id or a question.
|
24 |
- `Arxiv embedding` shows the landscape of current galaxy evolution papers (astro-ph.GA)
|
25 |
-
- `
|
|
|
|
|
26 |
|
27 |
This is not meant to be a replacement to existing tools like the
|
28 |
[ADS](https://ui.adsabs.harvard.edu/),
|
|
|
22 |
### Tool summary:
|
23 |
- `Paper search` looks for relevant papers given an arxiv id or a question.
|
24 |
- `Arxiv embedding` shows the landscape of current galaxy evolution papers (astro-ph.GA)
|
25 |
+
- `Answering questions` brings it all together using RAG to give concise answers to questions with primary sources and relevant papers.
|
26 |
+
- `Author search` uses a list of authors for the papers to visualize trajectories of individual researchers or groups over time.
|
27 |
+
- `Research hotspots` uses paper ages to visualize excess research at a particular time in the past in different parts of the embedding space.
|
28 |
|
29 |
This is not meant to be a replacement to existing tools like the
|
30 |
[ADS](https://ui.adsabs.harvard.edu/),
|
pages/5_research_hotspots.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datetime
|
3 |
+
import faiss
|
4 |
+
import streamlit as st
|
5 |
+
import feedparser
|
6 |
+
import urllib
|
7 |
+
import cloudpickle as cp
|
8 |
+
import pickle
|
9 |
+
from urllib.request import urlopen
|
10 |
+
from summa import summarizer
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import requests
|
14 |
+
import json
|
15 |
+
|
16 |
+
from langchain_openai import AzureOpenAIEmbeddings
|
17 |
+
from langchain.llms import OpenAI
|
18 |
+
from langchain_openai import AzureChatOpenAI
|
19 |
+
|
20 |
+
os.environ["OPENAI_API_TYPE"] = "azure"
|
21 |
+
os.environ["AZURE_ENDPOINT"] = st.secrets["endpoint1"]
|
22 |
+
os.environ["OPENAI_API_KEY"] = st.secrets["key1"]
|
23 |
+
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
|
24 |
+
|
25 |
+
embeddings = AzureOpenAIEmbeddings(
|
26 |
+
deployment="embedding",
|
27 |
+
model="text-embedding-ada-002",
|
28 |
+
azure_endpoint=st.secrets["endpoint1"],
|
29 |
+
)
|
30 |
+
|
31 |
+
llm = AzureChatOpenAI(
|
32 |
+
deployment_name="gpt4_small",
|
33 |
+
openai_api_version="2023-12-01-preview",
|
34 |
+
azure_endpoint=st.secrets["endpoint2"],
|
35 |
+
openai_api_key=st.secrets["key2"],
|
36 |
+
openai_api_type="azure",
|
37 |
+
temperature=0.
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
@st.cache_data
|
42 |
+
def get_feeds_data(url):
|
43 |
+
# data = cp.load(urlopen(url))
|
44 |
+
with open(url, "rb") as fp:
|
45 |
+
data = pickle.load(fp)
|
46 |
+
st.sidebar.success("Loaded data")
|
47 |
+
return data
|
48 |
+
|
49 |
+
# feeds_link = "https://drive.google.com/uc?export=download&id=1-IPk1voyUM9VqnghwyVrM1dY6rFnn1S_"
|
50 |
+
# embed_link = "https://dl.dropboxusercontent.com/s/ob2betm29qrtb8v/astro_ph_ga_feeds_ada_embedding_18-Apr-2023.pkl?dl=0"
|
51 |
+
dateval = "27-Jun-2023"
|
52 |
+
feeds_link = "local_files/astro_ph_ga_feeds_upto_"+dateval+".pkl"
|
53 |
+
embed_link = "local_files/astro_ph_ga_feeds_ada_embedding_"+dateval+".pkl"
|
54 |
+
gal_feeds = get_feeds_data(feeds_link)
|
55 |
+
arxiv_ada_embeddings = get_feeds_data(embed_link)
|
56 |
+
|
57 |
+
@st.cache_data
|
58 |
+
def get_embedding_data(url):
|
59 |
+
# data = cp.load(urlopen(url))
|
60 |
+
with open(url, "rb") as fp:
|
61 |
+
data = pickle.load(fp)
|
62 |
+
st.sidebar.success("Fetched data from API!")
|
63 |
+
return data
|
64 |
+
|
65 |
+
# url = "https://drive.google.com/uc?export=download&id=1133tynMwsfdR1wxbkFLhbES3FwDWTPjP"
|
66 |
+
url = "local_files/astro_ph_ga_embedding_"+dateval+".pkl"
|
67 |
+
e2d = get_embedding_data(url)
|
68 |
+
# e2d, _, _, _, _ = get_embedding_data(url)
|
69 |
+
|
70 |
+
ctr = -1
|
71 |
+
num_chunks = len(gal_feeds)
|
72 |
+
ctr = -1
|
73 |
+
num_chunks = len(gal_feeds)
|
74 |
+
all_text, all_titles, all_arxivid, all_links, all_authors, all_pubdates, all_old = [], [], [], [], [], [], []
|
75 |
+
|
76 |
+
for nc in range(num_chunks):
|
77 |
+
|
78 |
+
for i in range(len(gal_feeds[nc].entries)):
|
79 |
+
text = gal_feeds[nc].entries[i].summary
|
80 |
+
text = text.replace('\n', ' ')
|
81 |
+
text = text.replace('\\', '')
|
82 |
+
all_text.append(text)
|
83 |
+
all_titles.append(gal_feeds[nc].entries[i].title)
|
84 |
+
all_arxivid.append(gal_feeds[nc].entries[i].id.split('/')[-1][0:-2])
|
85 |
+
all_links.append(gal_feeds[nc].entries[i].links[1].href)
|
86 |
+
all_authors.append(gal_feeds[nc].entries[i].authors)
|
87 |
+
temp = gal_feeds[nc].entries[i].published
|
88 |
+
datetime_object = datetime.datetime.strptime(temp[0:10]+' '+temp[11:-1], '%Y-%m-%d %H:%M:%S')
|
89 |
+
all_pubdates.append(datetime_object)
|
90 |
+
all_old.append((datetime.datetime.now() - datetime_object).days)
|
91 |
+
|
92 |
+
def make_time_excess_plot(midage = 0, tolage = 1, onlyolder = False):
|
93 |
+
|
94 |
+
bw = 0.05
|
95 |
+
sigma = 4.0
|
96 |
+
mask = (np.abs(np.array(all_old) - midage*365) < tolage*365)
|
97 |
+
|
98 |
+
if onlyolder == True:
|
99 |
+
mask2 = (np.array(all_old) > midage*365 + tolage*365/2)
|
100 |
+
a = np.histogram2d(e2d[0:,0][mask2], e2d[0:,1][mask2], bins=(np.arange(0,17,bw)), density=True)
|
101 |
+
else:
|
102 |
+
a = np.histogram2d(e2d[0:,0], e2d[0:,1], bins=(np.arange(0,17,bw)), density=True)
|
103 |
+
b = np.histogram2d(e2d[0:,0][mask], e2d[0:,1][mask], bins=(np.arange(0,17,bw)), density=True)
|
104 |
+
temp = b[0].T - a[0].T
|
105 |
+
temp = ndimage.gaussian_filter(temp, sigma, mode='nearest')
|
106 |
+
vscale = (np.nanpercentile(temp,99.5) - np.nanpercentile(temp,0.5))/2
|
107 |
+
|
108 |
+
plt.figure(figsize=(11,9))
|
109 |
+
plt.pcolor(a[1][0:-1] + (a[1][1]-a[1][0])/2, a[2][0:-1] + (a[2][1]-a[2][0])/2,
|
110 |
+
temp,cmap='bwr',
|
111 |
+
vmin=-vscale,vmax=vscale); plt.colorbar()
|
112 |
+
# plt.scatter(e2d[0:,0], e2d[0:,1],s=2,color='k',alpha=0.1)
|
113 |
+
plt.title('excess research over the last %.1f yrs centered at %.1f yrs' %(tolage, midage))
|
114 |
+
plt.axis([0,14,1,15])
|
115 |
+
plt.axis('off')
|
116 |
+
st.pyplot(fig)
|
117 |
+
return
|
118 |
+
|
119 |
+
st.title('Research hotspots compared to full prior')
|
120 |
+
st.markdown('[Includes papers up to: `'+dateval+'`]')
|
121 |
+
|
122 |
+
midage = st.slider('Age', 0., 10., 0.)
|
123 |
+
tolage = st.slider('Period width', 0., 10., 1.)
|
124 |
+
|
125 |
+
st.markdown('Compare the research in a given time period to the full manifold.')
|
126 |
+
make_time_excess_plot(midage, tolage, onlyolder = False)
|
127 |
+
|
128 |
+
st.markdown('Compare the research in a given time period to research older than that.')
|
129 |
+
make_time_excess_plot(midage, tolage, onlyolder = True)
|
pages/{5_qa_sources_v1.py → 6_qa_sources_v1.py}
RENAMED
File without changes
|