synthesist / app.py
kiyer
functional pfdr
157e0ca
raw
history blame
31.2 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
from tqdm import tqdm
import pandas as pd
from datetime import datetime, date
from datasets import load_dataset, load_from_disk
from collections import Counter
import yaml, json, requests, sys, os, time
import concurrent.futures
from langchain import hub
from langchain_openai import ChatOpenAI as openai_llm
from langchain_core.runnables import RunnableConfig
from langchain_community.callbacks import StreamlitCallbackHandler
from langchain.agents import create_react_agent, Tool, AgentExecutor
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
ts = time.time()
anthropic_key = st.secrets["anthropic_key"]
openai_key = st.secrets["openai_key"]
from nltk.corpus import stopwords
import nltk
from openai import OpenAI
import anthropic
import cohere
import faiss
import spacy
from string import punctuation
import pytextrank
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textrank")
try:
stopwords.words('english')
except:
nltk.download('stopwords')
stopwords.words('english')
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from bokeh.io import output_notebook
from bokeh.palettes import Spectral5
from bokeh.transform import linear_cmap
st.image('local_files/pathfinder_logo.png')
st.expander("About", expanded=False).write(
"""
Pathfinder v2.0 is a framework for searching and visualizing astronomy papers on the [arXiv](https://arxiv.org/) and [ADS](https://ui.adsabs.harvard.edu/) using the context
sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.
This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.
**👈 Select a tool from the sidebar** to see some examples
of what this framework can do!
### Tool summary:
- Please wait while the initial data loads and compiles, this takes about a minute initially.
- `Paper search` looks for relevant papers given an arxiv id or a question.
This is not meant to be a replacement to existing tools like the
[ADS](https://ui.adsabs.harvard.edu/),
[arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
that otherwise might be missed during a literature survey.
It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
if you are interested in extending it please reach out!
Also add: more pages, actual generation, diff. toggles for retrieval/gen, feedback form, socials, literature, contact us, copyright, collaboration, etc.
The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
atlas that shows well studied (forests) and currently uncharted areas (water).
"""
)
if 'arxiv_corpus' not in st.session_state:
with st.spinner('loading data...'):
try:
arxiv_corpus = load_from_disk('data/')
except:
st.write('downloading data')
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
arxiv_corpus.save_to_disk('data/')
arxiv_corpus.add_faiss_index('embed')
st.session_state.arxiv_corpus = arxiv_corpus
st.toast('loaded arxiv corpus')
else:
arxiv_corpus = st.session_state.arxiv_corpus
if 'ids' not in st.session_state:
st.session_state.ids = arxiv_corpus['ads_id']
st.session_state.titles = arxiv_corpus['title']
st.session_state.abstracts = arxiv_corpus['abstract']
st.session_state.cites = arxiv_corpus['cites']
st.session_state.years = arxiv_corpus['date']
st.session_state.kws = arxiv_corpus['keywords']
st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))
#---------------------------------------------------------------
# A hack to "clear" the previous result when submitting a new prompt. This avoids
# the "previous run's text is grayed-out but visible during rerun" Streamlit behavior.
class DirtyState:
NOT_DIRTY = "NOT_DIRTY"
DIRTY = "DIRTY"
UNHANDLED_SUBMIT = "UNHANDLED_SUBMIT"
def get_dirty_state() -> str:
return st.session_state.get("dirty_state", DirtyState.NOT_DIRTY)
def set_dirty_state(state: str) -> None:
st.session_state["dirty_state"] = state
def with_clear_container(submit_clicked: bool) -> bool:
if get_dirty_state() == DirtyState.DIRTY:
if submit_clicked:
set_dirty_state(DirtyState.UNHANDLED_SUBMIT)
st.experimental_rerun()
else:
set_dirty_state(DirtyState.NOT_DIRTY)
if submit_clicked or get_dirty_state() == DirtyState.UNHANDLED_SUBMIT:
set_dirty_state(DirtyState.DIRTY)
return True
return False
#----------------------------------------------------------------
class Filter():
def filter(self, query: str, arxiv_id: str) -> List[str]:
pass
class CitationFilter(Filter): # can do it with all metadata
def __init__(self, corpus):
self.corpus = corpus
ids = ids
cites = cites
self.citation_counts = {ids[i]: cites[i] for i in range(len(ids))}
def citation_weight(self, x, shift, scale):
return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function
def filter(self, doc_scores, weight = 0.1): # additive weighting
citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
cmean, cstd = np.median(citation_count), np.std(citation_count)
citation_score = self.citation_weight(citation_count, cmean, cstd)
for i, doc in enumerate(doc_scores):
doc_scores[i][2] += weight * citation_score[i]
class DateFilter(Filter): # include time weighting eventually
def __init__(self, document_dates):
self.document_dates = document_dates
def parse_date(self, arxiv_id: str) -> datetime: # only for documents
if arxiv_id.startswith('astro-ph'):
arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
try:
year = int("20" + arxiv_id[:2])
month = int(arxiv_id[2:4])
except:
year = 2023
month = 1
return date(year, month, 1)
def weight(self, time, shift, scale):
return 1 / (1 + np.exp((time - shift) / scale))
def evaluate_filter(self, year, filter_string):
try:
# Use ast.literal_eval to safely evaluate the expression
result = eval(filter_string, {"__builtins__": None}, {"year": year})
return result
except Exception as e:
print(f"Error evaluating filter: {e}")
return False
def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
filtered = []
if boolean_date is not None:
boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
for doc in docs:
if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
filtered.append(doc)
else:
if min_date == None: min_date = date(1990, 1, 1)
if max_date == None: max_date = date(2024, 7, 3)
for doc in docs:
if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
filtered.append(doc)
if time_score is not None: # apply time weighting
for i, item in enumerate(filtered):
time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)
return filtered
class KeywordFilter(Filter):
def __init__(self, corpus,
remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):
self.index_path = 'keyword_index.json'
# self.metadata = metadata
self.remove_capitals = remove_capitals
self.ne_only = ne_only
self.stopwords = set(stopwords.words('english'))
self.verbose = verbose
self.index = None
self.kws = st.session_state.kws
self.ids = st.session_state.ids
self.titles = st.session_state.titles
self.load_or_build_index()
def preprocess_text(self, text: str) -> str:
text = ''.join(char for char in text if char.isalnum() or char.isspace())
if self.remove_capitals: text = text.lower()
return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)
def build_index(self): # include the title in the index
print("Building index...")
self.index = {}
for i in range(len(self.kws)):
paper = self.ids[i]
title = self.titles[i]
title_keywords = set()
for keyword in set(self.kws[i]) | title_keywords:
term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
if term not in self.index:
self.index[term] = []
self.index[term].append(self.ids[i])
with open(self.index_path, 'w') as f:
json.dump(self.index, f)
def load_index(self):
print("Loading existing index...")
with open(self.index_path, 'rb') as f:
self.index = json.load(f)
print("Index loaded successfully.")
def load_or_build_index(self):
if os.path.exists(self.index_path):
self.load_index()
else:
self.build_index()
def parse_doc(self, doc):
local_kws = []
for phrase in doc._.phrases:
local_kws.append(phrase.text.lower())
return [self.preprocess_text(word) for word in local_kws]
def get_propn(self, doc):
result = []
working_str = ''
for token in doc:
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
if working_str != '':
result.append(working_str.strip())
working_str = ''
if(token.pos_ == "PROPN"):
working_str += token.text + ' '
if working_str != '': result.append(working_str.strip())
return [self.preprocess_text(word) for word in result]
def filter(self, query: str, doc_ids = None):
doc = nlp(query)
query_keywords = self.parse_doc(doc)
nouns = self.get_propn(doc)
if self.verbose: print('keywords:', query_keywords)
if self.verbose: print('proper nouns:', nouns)
filtered = set()
if len(query_keywords) > 0 and not self.ne_only:
for keyword in query_keywords:
if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])
if len(nouns) > 0:
ne_results = set()
for noun in nouns:
if noun in self.index.keys(): ne_results |= set(self.index[noun])
if self.ne_only: filtered = ne_results # keep only named entity results
else: filtered &= ne_results # take the intersection
if doc_ids is not None: filtered &= doc_ids # apply filter to results
return filtered
class EmbeddingRetrievalSystem():
def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):
self.ids = st.session_state.ids
self.years = st.session_state.years
self.abstract = st.session_state.abstracts
self.client = OpenAI(api_key = openai_key)
self.embed_model = "text-embedding-3-small"
self.dataset = arxiv_corpus
self.kws = st.session_state.kws
self.weight_citation = weight_citation
self.weight_date = weight_date
self.weight_keywords = weight_keywords
self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}
# self.citation_filter = CitationFilter(self.dataset)
# self.date_filter = DateFilter(self.dataset['date'])
self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)
def parse_date(self, id):
# indexval = np.where(self.ids == id)[0][0]
indexval = id
return self.years[indexval]
def make_embedding(self, text):
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
return str_embed
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
def init_filters(self):
self.citation_filter = []
self.date_filter = []
self.keyword_filter = []
def get_query_embedding(self, query):
return self.make_embedding(query)
def analyze_temporal_query(self, query):
return
def calc_faiss(self, query_embedding, top_k = 100):
# xq = query_embedding.reshape(-1,1).T.astype('float32')
# D, I = self.index.search(xq, top_k)
# return I[0], D[0]
tmp = self.dataset.search('embed',query_embedding, k=top_k)
return [tmp.indices, tmp.scores]
def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):
topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 300)
if self.weight_keywords:
keyword_matches = self.keyword_filter.filter(query)
kw_indices = np.zeros_like(similarities)
for s in keyword_matches:
if self.id_to_index[s] in topk_indices:
# print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
similarities = similarities / 10.
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]
if return_scores:
return {doc[0]: doc[1] for doc in top_results}
# Only keep the document IDs
top_results = [doc[0] for doc in top_results]
return top_results
def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):
query_embedding = self.get_query_embedding(query)
# Judge time relevance
if time_result is None:
if self.weight_date:
time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
else:
time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = self.rank_and_filter(query,
query_embedding,
query_date,
top_k,
return_scores = return_scores,
time_result = time_result)
return top_results
class HydeRetrievalSystem(EmbeddingRetrievalSystem):
def __init__(self, generation_model: str = "claude-3-haiku-20240307",
embedding_model: str = "text-embedding-3-small",
temperature: float = 0.5,
max_doclen: int = 500,
generate_n: int = 1,
embed_query = True,
conclusion = False, **kwargs):
# Handle the kwargs for the superclass init -- filters/citation weighting
super().__init__(**kwargs)
if max_doclen * generate_n > 8191:
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
self.embedding_model = embedding_model
self.generation_model = generation_model
# HYPERPARAMETERS
self.temperature = temperature # generation temperature
self.max_doclen = max_doclen # max tokens for generation
self.generate_n = generate_n # how many documents
self.embed_query = embed_query # embed the query vector?
self.conclusion = conclusion # generate conclusion as well?
self.anthropic_key = anthropic_key
self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
docs = self.generate_docs(query)
doc_embeddings = self.embed_docs(docs)
if self.embed_query:
query_emb = self.embed_docs([query])[0]
doc_embeddings.append(query_emb)
embedding = np.mean(np.array(doc_embeddings), axis = 0)
top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)
return top_results
def generate_doc(self, query: str):
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract"""
if self.conclusion:
prompt += " and conclusion"
prompt += """ of an expert-level research paper
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
message = self.generation_client.messages.create(
model = self.generation_model,
max_tokens = self.max_doclen,
temperature = self.temperature,
system = prompt,
messages=[{ "role": "user",
"content": [{"type": "text", "text": query,}] }]
)
return message.content[0].text
def generate_docs(self, query: str):
docs = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
for future in concurrent.futures.as_completed(future_to_query):
query = future_to_query[future]
try:
data = future.result()
docs.append(data)
except Exception as exc:
pass
return docs
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
class HydeCohereRetrievalSystem(HydeRetrievalSystem):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.cohere_key = "Of1MjzFjGmvzBAqdvNHTQLkAjecPcOKpiIPAnFMn"
self.cohere_client = cohere.Client(self.cohere_key)
def retrieve(self, query: str,
top_k: int = 10,
rerank_top_k: int = 250,
return_scores = False, time_result = None,
reweight = False) -> List[Tuple[str, str, float]]:
if time_result is None:
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)
# doc_texts = self.get_document_texts(top_results)
# docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
docs_for_rerank = [self.abstract[i] for i in top_results]
if len(docs_for_rerank) == 0:
return []
reranked_results = self.cohere_client.rerank(
query=query,
documents=docs_for_rerank,
model='rerank-english-v3.0',
top_n=top_k
)
final_results = []
for result in reranked_results.results:
doc_id = top_results[result.index]
doc_text = docs_for_rerank[result.index]
score = float(result.relevance_score)
final_results.append([doc_id, "", score])
if reweight:
if time_result['has_temporal_aspect']:
final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])
if self.weight_citation: self.citation_filter.filter(final_results)
if return_scores:
return {result[0]: result[2] for result in final_results}
return [doc[0] for doc in final_results]
def embed_docs(self, docs: List[str]):
return self.embed_batch(docs)
# ----------------------------------------------------------------
if 'ec' not in st.session_state:
ec = EmbeddingRetrievalSystem(weight_keywords=True)
st.session_state.ec = ec
st.toast('loaded retrieval system')
else:
ec = st.session_state.ec
# Function to simulate question answering (replace with actual implementation)
def answer_question(question, top_k, keywords, toggles, method, question_type):
# Simulated answer (replace with actual logic)
# return f"Answer to '{question}' using method {method} for {question_type} question."
return run_ret(question, top_k)
def get_papers(ids):
papers, scores, links = [], [], []
for i in ids:
papers.append(st.session_state.titles[i])
scores.append(ids[i])
links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.arxiv_corpus['bibcode'][i]+'/abstract')
return pd.DataFrame({
'Title': papers,
'Relevance': scores,
'Link': links
})
def create_embedding_plot(rs):
pltsource = ColumnDataSource(data=dict(
x=st.session_state.arxiv_corpus['umap_x'],
y=st.session_state.arxiv_corpus['umap_y'],
title=st.session_state.titles,
link=st.session_state.arxiv_corpus['bibcode'],
))
rsflag = np.zeros((len(st.session_state.ids),))
rsflag[np.array([k for k in rs])] = 1
pltsource.data['colors'] = rsflag * 0.8 + 0.1
pltsource.data['sizes'] = (rsflag + 1)**5 / 100
TOOLTIPS = """
<div style="width:300px;">
ID: $index
($x, $y)
@title <br>
@link <br> <br>
</div>
"""
mapper = linear_cmap(field_name="colors", palette=Spectral5, low=0., high=1.)
p = figure(width=700, height=900, tooltips=TOOLTIPS, x_range=(0, 20), y_range=(-4.2,18),
title="UMAP projection of embeddings for the astro-ph corpus")
p.axis.visible=False
p.grid.visible=False
p.outline_line_alpha = 0.
p.circle('x', 'y', radius='sizes', source=pltsource, alpha=0.3, fill_color=mapper, fill_alpha='colors', line_color="lightgrey",line_alpha=0.1)
return p
# Function to simulate keyword extraction (replace with actual implementation)
def extract_keywords(question):
# Simulated keyword extraction (replace with actual logic)
return ['keyword1', 'keyword2', 'keyword3']
# Function to estimate consensus (replace with actual implementation)
def estimate_consensus():
# Simulated consensus estimation (replace with actual calculation)
return 0.75
def run_ret(query, top_k):
rs = ec.retrieve(query, top_k, return_scores=True)
output_str = ''
for i in rs:
if rs[i] > 0.5:
output_str = output_str + '---> ' + st.session_state.abstracts[i] + '(score: %.2f) \n' %rs[i]
else:
output_str = output_str + st.session_state.abstracts[i] + '(score: %.2f) \n' %rs[i]
return output_str, rs
def Library(query, top_k=7):
rs = ec.retrieve(query, top_k, return_scores=True)
op_docs = ''
for paperno, i in enumerate(rs):
# op_docs.append(abstracts[i])
op_docs = op_docs + 'Paper %.0f:' %(paperno+1) +' (published in '+st.session_state.arxiv_corpus['bibcode'][i][0:4] + ') ' + st.session_state.titles[i] + '\n' + st.session_state.abstracts[i] + '\n\n'
# st.write(op_docs)
return op_docs
search = DuckDuckGoSearchAPIWrapper()
tools = [
Tool(
name="Library",
func=Library,
description="A source of information pertinent to your question. Do not answer a question without consulting this!"
),
Tool(
name="Search",
func=search.run,
description="useful for when you need to look up knowledge about common topics or current events",
)
]
if 'tools' not in st.session_state:
st.session_state.tools = tools
# for another question type:
# First, find the quotes from the document that are most relevant to answering the question, and then print them in numbered order.
# Quotes should be relatively short. If there are no relevant quotes, write “No relevant quotes” instead.
gen_llm = openai_llm(temperature=0,model_name='gpt-4o-mini', openai_api_key = openai_key)
template = """You are an expert astronomer and cosmologist.
Answer the following question as best you can using information from the library, but speaking in a concise and factual manner.
If you can not come up with an answer, say you do not know.
Try to break the question down into smaller steps and solve it in a logical manner.
You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question. provide information about how you arrived at the answer, and any nuances or uncertainties the reader should be aware of
Begin! Remember to speak in a pedagogical and factual manner."
Question: {input}
Thought:{agent_scratchpad}"""
prompt = hub.pull("hwchase17/react")
prompt.template=template
from langchain.callbacks import FileCallbackHandler
from langchain.callbacks.manager import CallbackManager
# timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# file_path = f"agent_trace_{timestamp}.txt"
file_path = "agent_trace.txt"
file_handler = FileCallbackHandler(file_path)
callback_manager=CallbackManager([file_handler])
tool_names = [tool.name for tool in st.session_state.tools]
if 'agent' not in st.session_state:
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names)
agent = create_react_agent(llm=gen_llm, tools=tools, prompt=prompt)
st.session_state.agent = agent
if 'agent_executor' not in st.session_state:
agent_executor = AgentExecutor(agent=st.session_state.agent, tools=st.session_state.tools, verbose=True, handle_parsing_errors=True, callbacks=CallbackManager([file_handler]))
st.session_state.agent_executor = agent_executor
# Streamlit app
def main():
# st.title("Question Answering App")
# Sidebar (Inputs)
st.sidebar.header("Fine-tune the search")
top_k = st.sidebar.slider("Number of papers to retrieve:", 3, 30, 10)
extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
st.sidebar.subheader("Toggles")
toggle_a = st.sidebar.checkbox("Weight by keywords")
toggle_b = st.sidebar.checkbox("weight by time")
toggle_c = st.sidebar.checkbox("Weight by citations")
method = st.sidebar.radio("Choose a method:", ["Semantic search", "Semantic search + HyDE", "Semantic search + HyDE + CoHERE"])
question_type = st.sidebar.selectbox("Select question type:", ["Single paper", "Multi-paper", "Summary"])
# store_output = st.sidebar.checkbox("Store the output")
store_output = st.sidebar.button("Save output")
# Main page (Outputs)
query = st.text_input("Ask me anything:")
submit_button = st.button("Submit")
if submit_button:
# Process inputs
keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
toggles = {'Keyword weighting': toggle_a, 'Time weighting': toggle_b, 'Citation weighting': toggle_c}
# Generate outputs
answer, rs = answer_question(query, top_k, keywords, toggles, method, question_type)
papers_df = get_papers(rs)
embedding_plot = create_embedding_plot(rs)
triggered_keywords = extract_keywords(query)
consensus = estimate_consensus()
# Display outputs
answer = st.session_state.agent_executor.invoke({"input": query,})
st.write(answer["output"])
with open(file_path, 'r') as file:
intermediate_steps = file.read()
st.expander('Intermediate steps', expanded=False).write(intermediate_steps)
# st.write(answer)
with st.expander("Relevant papers", expanded=True):
# st.dataframe(papers_df, hide_index=True)
st.data_editor(papers_df,
column_config = {'Link':st.column_config.LinkColumn(display_text= 'https://ui.adsabs.harvard.edu/abs/(.*?)/abstract')}
)
with st.expander("Embedding map", expanded=False):
st.bokeh_chart(embedding_plot)
col1, col2 = st.columns(2)
with col1:
st.subheader("Question Type")
st.write(question_type)
st.subheader("Triggered Keywords")
st.write(", ".join(triggered_keywords))
with col2:
st.subheader("Consensus Estimate")
st.write(f"{consensus:.2%}")
# st.subheader("Papers Used")
# st.dataframe(papers_df)
else:
st.info("Use the sidebar to input parameters and submit to see results.")
if store_output:
st.toast("Output stored successfully!")
if __name__ == "__main__":
main()