Spaces:
Running
Running
basic files and codebase
Browse files- .gitignore +2 -0
- .streamlit/config.toml +2 -0
- app.py +52 -0
- fns.py +483 -0
- pages/.ipynb_checkpoints/1 retrieval-checkpoint.py +124 -0
- pages/1 retrieval.py +124 -0
- requirements.txt +16 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.ipynb_checkpoints/
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
backgroundColor="#C4C4C4"
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from fns import *
|
3 |
+
|
4 |
+
st.set_page_config(
|
5 |
+
page_title="Synthesist",
|
6 |
+
page_icon="👋",
|
7 |
+
)
|
8 |
+
|
9 |
+
# st.write("# Welcome to Pathfinder! 👋")
|
10 |
+
st.image('local_files/synth_logo.png')
|
11 |
+
|
12 |
+
st.sidebar.success("Select a function above.")
|
13 |
+
st.sidebar.markdown("Current functions include visualizing papers in the arxiv embedding, searching for similar papers to an input paper or prompt phrase, or answering quick questions.")
|
14 |
+
|
15 |
+
|
16 |
+
st.markdown("")
|
17 |
+
st.markdown(
|
18 |
+
"""
|
19 |
+
**Synthesist** (from Peter Watt's [Blindsight](https://scalar.usc.edu/works/network-ecologies/on-peter-watts-blindsight)) is a framework for searching and visualizing papers on the [arXiv](https://arxiv.org/) using the context
|
20 |
+
sensitivity from modern large language models (LLMs) to better parse patterns in paper contexts.
|
21 |
+
|
22 |
+
This tool was built during the [JSALT workshop](https://www.clsp.jhu.edu/2024-jelinek-summer-workshop-on-speech-and-language-technology/) to do awesome things.
|
23 |
+
|
24 |
+
**👈 Select a tool from the sidebar** to see some examples
|
25 |
+
of what this framework can do!
|
26 |
+
|
27 |
+
### Tool summary:
|
28 |
+
- Please wait while the initial data loads and compiles, this takes about a minute initially.
|
29 |
+
- `Paper search` looks for relevant papers given an arxiv id or a question.
|
30 |
+
|
31 |
+
This is not meant to be a replacement to existing tools like the
|
32 |
+
[ADS](https://ui.adsabs.harvard.edu/),
|
33 |
+
[arxivsorter](https://www.arxivsorter.org/), semantic search or google scholar, but rather a supplement to find papers
|
34 |
+
that otherwise might be missed during a literature survey.
|
35 |
+
It is trained on astro-ph (astrophysics of galaxies) papers up to last-year-ish mined from arxiv and supplemented with ADS metadata,
|
36 |
+
if you are interested in extending it please reach out!
|
37 |
+
|
38 |
+
|
39 |
+
Also add: more pages, actual generation, diff. toggles for retrieval/gen, feedback form, socials, literature, contact us, copyright, collaboration, etc.
|
40 |
+
|
41 |
+
The image below shows a representation of all the astro-ph.GA papers that can be explored in more detail
|
42 |
+
using the `Arxiv embedding` page. The papers tend to cluster together by similarity, and result in an
|
43 |
+
atlas that shows well studied (forests) and currently uncharted areas (water).
|
44 |
+
"""
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
s = time.time()
|
49 |
+
st.markdown(f'Loading data for retrieval system, please wait before jumping to one of the pages....')
|
50 |
+
st.session_state.retrieval_system = EmbeddingRetrievalSystem()
|
51 |
+
st.session_state.dataset = load_dataset('arxiv_corpus/', split = "train")
|
52 |
+
st.markdown(f'Loaded retrieval system, time taken: %.1f sec' %(time.time()-s))
|
fns.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
s2 = time.time()
|
3 |
+
import numpy as np
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
import json
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
from typing import List, Dict, Any, Tuple
|
9 |
+
from collections import defaultdict
|
10 |
+
# import wandb
|
11 |
+
import numpy as np
|
12 |
+
from tqdm import tqdm
|
13 |
+
from datetime import datetime, date
|
14 |
+
import pickle
|
15 |
+
from datasets import load_dataset
|
16 |
+
import os
|
17 |
+
from nltk.corpus import stopwords
|
18 |
+
import nltk
|
19 |
+
from openai import OpenAI
|
20 |
+
import anthropic
|
21 |
+
import time
|
22 |
+
from collections import Counter
|
23 |
+
|
24 |
+
try:
|
25 |
+
stopwords.words('english')
|
26 |
+
except:
|
27 |
+
nltk.download('stopwords')
|
28 |
+
stopwords.words('english')
|
29 |
+
|
30 |
+
|
31 |
+
openai_key = st.secrets['openai_key']
|
32 |
+
anthropic_key = st.secrets['anthropic_key']
|
33 |
+
# anthropic_key = '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'
|
34 |
+
|
35 |
+
@st.cache_data
|
36 |
+
def load_astro_meta():
|
37 |
+
print('load astro meta')
|
38 |
+
return load_dataset('arxiv_corpus/', split = "train")
|
39 |
+
|
40 |
+
@st.cache_data
|
41 |
+
def load_index_mapping(index_mapping_path):
|
42 |
+
print("Loading index mapping...")
|
43 |
+
with open(index_mapping_path, 'rb') as f:
|
44 |
+
temp = pickle.load(f)
|
45 |
+
return temp
|
46 |
+
|
47 |
+
@st.cache_data
|
48 |
+
def load_embeddings(embeddings_path):
|
49 |
+
print("Loading embedding")
|
50 |
+
return np.load(embeddings_path)
|
51 |
+
|
52 |
+
@st.cache_data
|
53 |
+
def load_metadata(meta_path):
|
54 |
+
print("Loading metadata...")
|
55 |
+
with open(meta_path, 'r') as f:
|
56 |
+
metadata = json.load(f)
|
57 |
+
return metadata
|
58 |
+
|
59 |
+
# @st.cache_data
|
60 |
+
def load_umapcoords(umap_path):
|
61 |
+
print('loading umap coords')
|
62 |
+
with open(umap_path, "rb") as fp: #Pickling
|
63 |
+
umap = pickle.load(fp)
|
64 |
+
return umap
|
65 |
+
|
66 |
+
|
67 |
+
class EmbeddingClient:
|
68 |
+
def __init__(self, client: OpenAI, model: str = "text-embedding-3-small"):
|
69 |
+
self.client = client
|
70 |
+
self.model = model
|
71 |
+
|
72 |
+
def embed(self, text: str) -> np.ndarray:
|
73 |
+
embedding = self.client.embeddings.create(input=[text], model=self.model).data[0].embedding
|
74 |
+
return np.array(embedding, dtype=np.float32)
|
75 |
+
|
76 |
+
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
|
77 |
+
embeddings = self.client.embeddings.create(input=texts, model=self.model).data
|
78 |
+
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
|
79 |
+
|
80 |
+
class RetrievalSystem(ABC):
|
81 |
+
@abstractmethod
|
82 |
+
def retrieve(self, query: str, arxiv_id: str, top_k: int = 100) -> List[str]:
|
83 |
+
pass
|
84 |
+
|
85 |
+
def parse_date(self, arxiv_id: str) -> datetime:
|
86 |
+
if arxiv_id is None:
|
87 |
+
return date.today()
|
88 |
+
|
89 |
+
if arxiv_id.startswith('astro-ph'):
|
90 |
+
arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
|
91 |
+
try:
|
92 |
+
year = int("20" + arxiv_id[:2])
|
93 |
+
month = int(arxiv_id[2:4])
|
94 |
+
except:
|
95 |
+
year = 2023
|
96 |
+
month = 1
|
97 |
+
return date(year, month, 1)
|
98 |
+
|
99 |
+
class EmbeddingRetrievalSystem(RetrievalSystem):
|
100 |
+
def __init__(self, embeddings_path: str = "local_files/embeddings_matrix.npy",
|
101 |
+
documents_path: str = "local_files/documents.pkl",
|
102 |
+
index_mapping_path: str = "local_files/index_mapping.pkl",
|
103 |
+
metadata_path: str = "local_files/metadata.json",
|
104 |
+
weight_citation = False, weight_date = False, weight_keywords = False):
|
105 |
+
|
106 |
+
self.embeddings_path = embeddings_path
|
107 |
+
self.documents_path = documents_path
|
108 |
+
self.index_mapping_path = index_mapping_path
|
109 |
+
self.metadata_path = metadata_path
|
110 |
+
self.weight_citation = weight_citation
|
111 |
+
self.weight_date = weight_date
|
112 |
+
self.weight_keywords = weight_keywords
|
113 |
+
|
114 |
+
self.embeddings = None
|
115 |
+
self.documents = None
|
116 |
+
self.index_mapping = None
|
117 |
+
self.metadata = None
|
118 |
+
self.document_dates = []
|
119 |
+
|
120 |
+
self.load_data()
|
121 |
+
self.init_filters()
|
122 |
+
|
123 |
+
# config = yaml.safe_load(open('../config.yaml', 'r'))
|
124 |
+
self.client = EmbeddingClient(OpenAI(api_key=openai_key))
|
125 |
+
self.anthropic_client = anthropic.Anthropic(api_key=anthropic_key)
|
126 |
+
|
127 |
+
def generate_metadata(self):
|
128 |
+
astro_meta = load_astro_meta()
|
129 |
+
# dataset = load_dataset('arxiv_corpus/')
|
130 |
+
keys = list(astro_meta[0].keys())
|
131 |
+
keys.remove('abstract')
|
132 |
+
keys.remove('introduction')
|
133 |
+
keys.remove('conclusions')
|
134 |
+
|
135 |
+
self.metadata = {}
|
136 |
+
for paper in astro_meta:
|
137 |
+
id_str = paper['arxiv_id']
|
138 |
+
self.metadata[id_str] = {key: paper[key] for key in keys}
|
139 |
+
|
140 |
+
with open(self.metadata_path, 'w') as f:
|
141 |
+
json.dump(self.metadata, f)
|
142 |
+
st.markdown("Wrote metadata to {}".format(self.metadata_path))
|
143 |
+
#
|
144 |
+
|
145 |
+
def load_data(self):
|
146 |
+
# print("Loading embeddings...")
|
147 |
+
|
148 |
+
# self.embeddings = np.load(self.embeddings_path)
|
149 |
+
self.embeddings = load_embeddings(self.embeddings_path)
|
150 |
+
st.sidebar.success("Loaded embeddings")
|
151 |
+
|
152 |
+
# with open(self.index_mapping_path, 'rb') as f:
|
153 |
+
# self.index_mapping = pickle.load(f)
|
154 |
+
self.index_mapping = load_index_mapping(self.index_mapping_path)
|
155 |
+
st.sidebar.success("Loaded index mapping")
|
156 |
+
|
157 |
+
# print("Loading documents...")
|
158 |
+
# with open(self.documents_path, 'rb') as f:
|
159 |
+
# self.documents = pickle.load(f)
|
160 |
+
dataset = load_astro_meta()
|
161 |
+
st.sidebar.success("Loaded documents")
|
162 |
+
|
163 |
+
|
164 |
+
print("Processing document dates...")
|
165 |
+
# self.document_dates = {doc.id: self.parse_date(doc.arxiv_id) for doc in self.documents}
|
166 |
+
aids = dataset['arxiv_id']
|
167 |
+
adsids = dataset['id']
|
168 |
+
self.document_dates = {adsids[i]: self.parse_date(aids[i]) for i in range(len(aids))}
|
169 |
+
|
170 |
+
if os.path.exists(self.metadata_path):
|
171 |
+
self.metadata = load_metadata(self.metadata_path)
|
172 |
+
print("Loaded metadata.")
|
173 |
+
else:
|
174 |
+
print("Could not find path; generating metadata.")
|
175 |
+
self.generate_metadata()
|
176 |
+
|
177 |
+
print("Data loaded successfully.")
|
178 |
+
|
179 |
+
def init_filters(self):
|
180 |
+
print("Loading filters...")
|
181 |
+
self.citation_filter = CitationFilter(metadata = self.metadata)
|
182 |
+
|
183 |
+
self.date_filter = DateFilter(document_dates = self.document_dates)
|
184 |
+
|
185 |
+
self.keyword_filter = KeywordFilter(index_path = "local_files/keyword_index.json", metadata = self.metadata, remove_capitals = True)
|
186 |
+
|
187 |
+
def retrieve(self, query: str, arxiv_id: str = None, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
|
188 |
+
query_date = self.parse_date(arxiv_id)
|
189 |
+
query_embedding = self.get_query_embedding(query)
|
190 |
+
|
191 |
+
# Judge time relevance
|
192 |
+
if time_result is None:
|
193 |
+
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
|
194 |
+
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
|
195 |
+
|
196 |
+
top_results = self.rank_and_filter(query, query_embedding, query_date, top_k, return_scores = return_scores, time_result = time_result)
|
197 |
+
|
198 |
+
return top_results
|
199 |
+
|
200 |
+
def rank_and_filter(self, query, query_embedding: np.ndarray, query_date, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
|
201 |
+
# Calculate similarities
|
202 |
+
similarities = np.dot(self.embeddings, query_embedding)
|
203 |
+
|
204 |
+
# Filter and rank results
|
205 |
+
if self.weight_keywords: keyword_matches = self.keyword_filter.filter(query)
|
206 |
+
|
207 |
+
results = []
|
208 |
+
for doc_id, mappings in self.index_mapping.items():
|
209 |
+
if not self.weight_keywords or doc_id in keyword_matches:
|
210 |
+
abstract_sim = similarities[mappings['abstract']] if 'abstract' in mappings else -np.inf
|
211 |
+
conclusions_sim = similarities[mappings['conclusions']] if 'conclusions' in mappings else -np.inf
|
212 |
+
|
213 |
+
if abstract_sim > conclusions_sim:
|
214 |
+
results.append([doc_id, "abstract", abstract_sim])
|
215 |
+
else:
|
216 |
+
results.append([doc_id, "conclusions", conclusions_sim])
|
217 |
+
|
218 |
+
|
219 |
+
# Sort and weight and get top-k results
|
220 |
+
if time_result['has_temporal_aspect']:
|
221 |
+
filtered_results = self.date_filter.filter(results, boolean_date = time_result['expected_year_filter'], time_score = time_result['expected_recency_weight'], max_date = query_date)
|
222 |
+
else:
|
223 |
+
filtered_results = self.date_filter.filter(results, max_date = query_date)
|
224 |
+
|
225 |
+
if self.weight_citation: self.citation_filter.filter(filtered_results)
|
226 |
+
|
227 |
+
top_results = sorted(filtered_results, key=lambda x: x[2], reverse=True)[:top_k]
|
228 |
+
|
229 |
+
if return_scores:
|
230 |
+
return {doc[0]: doc[2] for doc in top_results}
|
231 |
+
|
232 |
+
# Only keep the document IDs
|
233 |
+
top_results = [doc[0] for doc in top_results]
|
234 |
+
return top_results
|
235 |
+
|
236 |
+
def get_query_embedding(self, query: str) -> np.ndarray:
|
237 |
+
embedding = self.client.embed(query)
|
238 |
+
return np.array(embedding, dtype = np.float32)
|
239 |
+
|
240 |
+
def get_document_texts(self, doc_ids: List[str]) -> List[Dict[str, str]]:
|
241 |
+
results = []
|
242 |
+
for doc_id in doc_ids:
|
243 |
+
doc = next((d for d in self.documents if d.id == doc_id), None)
|
244 |
+
if doc:
|
245 |
+
results.append({
|
246 |
+
'id': doc.id,
|
247 |
+
'abstract': doc.abstract,
|
248 |
+
'conclusions': doc.conclusions
|
249 |
+
})
|
250 |
+
else:
|
251 |
+
print(f"Warning: Document with ID {doc_id} not found.")
|
252 |
+
return results
|
253 |
+
|
254 |
+
def retrieve_context(self, query, top_k, sections = ["abstract", "conclusions"], **kwargs):
|
255 |
+
docs = self.retrieve(query, top_k = top_k, return_scores = True, **kwargs)
|
256 |
+
docids = docs.keys()
|
257 |
+
doctexts = self.get_document_texts(docids) # avoid having to do this repetitively?
|
258 |
+
context_str = ""
|
259 |
+
doclist = []
|
260 |
+
|
261 |
+
for docid, doctext in zip(docids, doctexts):
|
262 |
+
for section in sections:
|
263 |
+
context_str += f"{docid}: {doctext[section]}\n"
|
264 |
+
|
265 |
+
meta_row = self.metadata[docid]
|
266 |
+
doclist.append(Document(docid, doctext['abstract'], doctext['conclusions'], docid, title = meta_row['title'],
|
267 |
+
score = docs[docid], n_citation = meta_row['citation_count'], keywords = meta_row['keyword_search']))
|
268 |
+
|
269 |
+
return context_str, doclist
|
270 |
+
|
271 |
+
|
272 |
+
class Filter():
|
273 |
+
def filter(self, query: str, arxiv_id: str) -> List[str]:
|
274 |
+
pass
|
275 |
+
|
276 |
+
class CitationFilter(Filter): # can do it with all metadata
|
277 |
+
def __init__(self, metadata):
|
278 |
+
self.metadata = metadata
|
279 |
+
self.citation_counts = {doc_id: self.metadata[doc_id]['citation_count'] for doc_id in self.metadata}
|
280 |
+
|
281 |
+
def citation_weight(self, x, shift, scale):
|
282 |
+
return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function
|
283 |
+
|
284 |
+
def filter(self, doc_scores, weight = 0.1): # additive weighting
|
285 |
+
citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
|
286 |
+
cmean, cstd = np.median(citation_count), np.std(citation_count)
|
287 |
+
citation_score = self.citation_weight(citation_count, cmean, cstd)
|
288 |
+
|
289 |
+
for i, doc in enumerate(doc_scores):
|
290 |
+
doc_scores[i][2] += weight * citation_score[i]
|
291 |
+
|
292 |
+
class DateFilter(Filter): # include time weighting eventually
|
293 |
+
def __init__(self, document_dates):
|
294 |
+
self.document_dates = document_dates
|
295 |
+
|
296 |
+
def parse_date(self, arxiv_id: str) -> datetime: # only for documents
|
297 |
+
if arxiv_id.startswith('astro-ph'):
|
298 |
+
arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
|
299 |
+
try:
|
300 |
+
year = int("20" + arxiv_id[:2])
|
301 |
+
month = int(arxiv_id[2:4])
|
302 |
+
except:
|
303 |
+
year = 2023
|
304 |
+
month = 1
|
305 |
+
return date(year, month, 1)
|
306 |
+
|
307 |
+
def weight(self, time, shift, scale):
|
308 |
+
return 1 / (1 + np.exp((time - shift) / scale))
|
309 |
+
|
310 |
+
def evaluate_filter(self, year, filter_string):
|
311 |
+
try:
|
312 |
+
# Use ast.literal_eval to safely evaluate the expression
|
313 |
+
result = eval(filter_string, {"__builtins__": None}, {"year": year})
|
314 |
+
return result
|
315 |
+
except Exception as e:
|
316 |
+
print(f"Error evaluating filter: {e}")
|
317 |
+
return False
|
318 |
+
|
319 |
+
def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
|
320 |
+
filtered = []
|
321 |
+
|
322 |
+
if boolean_date is not None:
|
323 |
+
boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
|
324 |
+
for doc in docs:
|
325 |
+
if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
|
326 |
+
filtered.append(doc)
|
327 |
+
|
328 |
+
else:
|
329 |
+
if min_date == None: min_date = date(1990, 1, 1)
|
330 |
+
if max_date == None: max_date = date(2024, 7, 3)
|
331 |
+
|
332 |
+
for doc in docs:
|
333 |
+
if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
|
334 |
+
filtered.append(doc)
|
335 |
+
|
336 |
+
if time_score is not None: # apply time weighting
|
337 |
+
for i, item in enumerate(filtered):
|
338 |
+
time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
|
339 |
+
filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)
|
340 |
+
|
341 |
+
return filtered
|
342 |
+
|
343 |
+
class KeywordFilter(Filter):
|
344 |
+
def __init__(self, index_path: str = "local_files/keyword_index.json",
|
345 |
+
remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):
|
346 |
+
|
347 |
+
self.index_path = index_path
|
348 |
+
self.metadata = metadata
|
349 |
+
self.remove_capitals = remove_capitals
|
350 |
+
self.ne_only = ne_only
|
351 |
+
self.stopwords = set(stopwords.words('english'))
|
352 |
+
self.verbose = verbose
|
353 |
+
self.index = None
|
354 |
+
|
355 |
+
self.load_or_build_index()
|
356 |
+
|
357 |
+
def preprocess_text(self, text: str) -> str:
|
358 |
+
text = ''.join(char for char in text if char.isalnum() or char.isspace())
|
359 |
+
if self.remove_capitals: text = text.lower()
|
360 |
+
return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)
|
361 |
+
|
362 |
+
def build_index(self): # include the title in the index
|
363 |
+
print("Building index...")
|
364 |
+
self.index = {}
|
365 |
+
|
366 |
+
for i, index in tqdm(enumerate(self.metadata)):
|
367 |
+
paper = self.metadata[index]
|
368 |
+
title = paper['title'][0]
|
369 |
+
title_keywords = set() #set(self.parse_doc(title) + self.get_propn(title))
|
370 |
+
for keyword in set(paper['keyword_search']) | title_keywords:
|
371 |
+
term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
|
372 |
+
if term not in self.index:
|
373 |
+
self.index[term] = []
|
374 |
+
|
375 |
+
self.index[term].append(paper['arxiv_id'])
|
376 |
+
|
377 |
+
with open(self.index_path, 'w') as f:
|
378 |
+
json.dump(self.index, f)
|
379 |
+
|
380 |
+
def load_index(self):
|
381 |
+
print("Loading existing index...")
|
382 |
+
with open(self.index_path, 'rb') as f:
|
383 |
+
self.index = json.load(f)
|
384 |
+
|
385 |
+
print("Index loaded successfully.")
|
386 |
+
|
387 |
+
def load_or_build_index(self):
|
388 |
+
if os.path.exists(self.index_path):
|
389 |
+
self.load_index()
|
390 |
+
else:
|
391 |
+
self.build_index()
|
392 |
+
|
393 |
+
def parse_doc(self, doc):
|
394 |
+
local_kws = []
|
395 |
+
|
396 |
+
for phrase in doc._.phrases:
|
397 |
+
local_kws.append(phrase.text.lower())
|
398 |
+
|
399 |
+
return [self.preprocess_text(word) for word in local_kws]
|
400 |
+
|
401 |
+
def get_propn(self, doc):
|
402 |
+
result = []
|
403 |
+
|
404 |
+
working_str = ''
|
405 |
+
for token in doc:
|
406 |
+
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
|
407 |
+
if working_str != '':
|
408 |
+
result.append(working_str.strip())
|
409 |
+
working_str = ''
|
410 |
+
|
411 |
+
if(token.pos_ == "PROPN"):
|
412 |
+
working_str += token.text + ' '
|
413 |
+
|
414 |
+
if working_str != '': result.append(working_str.strip())
|
415 |
+
|
416 |
+
return [self.preprocess_text(word) for word in result]
|
417 |
+
|
418 |
+
def filter(self, query: str, doc_ids = None):
|
419 |
+
doc = nlp(query)
|
420 |
+
query_keywords = self.parse_doc(doc)
|
421 |
+
nouns = self.get_propn(doc)
|
422 |
+
if self.verbose: print('keywords:', query_keywords)
|
423 |
+
if self.verbose: print('proper nouns:', nouns)
|
424 |
+
|
425 |
+
filtered = set()
|
426 |
+
if len(query_keywords) > 0 and not self.ne_only:
|
427 |
+
for keyword in query_keywords:
|
428 |
+
if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])
|
429 |
+
|
430 |
+
if len(nouns) > 0:
|
431 |
+
ne_results = set()
|
432 |
+
for noun in nouns:
|
433 |
+
if noun in self.index.keys(): ne_results |= set(self.index[noun])
|
434 |
+
|
435 |
+
if self.ne_only: filtered = ne_results # keep only named entity results
|
436 |
+
else: filtered &= ne_results # take the intersection
|
437 |
+
|
438 |
+
if doc_ids is not None: filtered &= doc_ids # apply filter to results
|
439 |
+
return filtered
|
440 |
+
|
441 |
+
def get_cluster_keywords(clust_ids, all_keywords):
|
442 |
+
|
443 |
+
tagstr = ''
|
444 |
+
clust_tags = []
|
445 |
+
for i in range(len(clust_ids)):
|
446 |
+
clust_paper_kw = []
|
447 |
+
for j in range(len(all_keywords[clust_ids[i]])):
|
448 |
+
clust_tags.append(all_keywords[clust_ids[i]][j])
|
449 |
+
tags = Counter(clust_tags).most_common(30)
|
450 |
+
for i in range(len(tags)):
|
451 |
+
# print(tags[i][0])
|
452 |
+
if len(tags[i][0]) > 2:
|
453 |
+
tagstr = tagstr + tags[i][0]+ ', '
|
454 |
+
return tagstr
|
455 |
+
|
456 |
+
def get_keywords(query, ret_indices, all_keywords):
|
457 |
+
|
458 |
+
kws = get_cluster_keywords(ret_indices, all_keywords)
|
459 |
+
|
460 |
+
kw_prompt = """You are an expert research assistant. Here are a list of keywords corresponding to the topics that a query and its answer are about that you need to synthesize into a succinct summary:
|
461 |
+
["""+kws+"""]
|
462 |
+
|
463 |
+
First, find the keywords that are most relevant to answering the question, and then print them in numbered order. Keywords should be a few words at most. Do not list more than five keywords.
|
464 |
+
|
465 |
+
If there are no relevant quotes, write “No relevant keywords” instead.
|
466 |
+
|
467 |
+
Thus, the format of your overall response should look like what’s shown between the tags. Make sure to follow the formatting and spacing exactly.
|
468 |
+
|
469 |
+
Keywords:
|
470 |
+
[1] Milky Way galaxy
|
471 |
+
[2] Good agreement
|
472 |
+
[3] Bayesian
|
473 |
+
[4] Observational constraints
|
474 |
+
[5] Globular clusters
|
475 |
+
[6] Kinematic data
|
476 |
+
|
477 |
+
If the question cannot be answered by the document, say so."""
|
478 |
+
|
479 |
+
client = anthropic.Anthropic(api_key=anthropic_key,)
|
480 |
+
message = client.messages.create(model="claude-3-haiku-20240307",max_tokens=200,temperature=0,system=kw_prompt,
|
481 |
+
messages=[{"role": "user","content": [{"type": "text","text": query}]}])
|
482 |
+
|
483 |
+
return message.content[0].text
|
pages/.ipynb_checkpoints/1 retrieval-checkpoint.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
s = time.time()
|
3 |
+
|
4 |
+
import os
|
5 |
+
import datetime
|
6 |
+
import faiss
|
7 |
+
import streamlit as st
|
8 |
+
import feedparser
|
9 |
+
import urllib
|
10 |
+
import cloudpickle as cp
|
11 |
+
import pickle
|
12 |
+
from urllib.request import urlopen
|
13 |
+
from summa import summarizer
|
14 |
+
import numpy as np
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import requests
|
17 |
+
import json
|
18 |
+
from scipy import ndimage
|
19 |
+
|
20 |
+
from langchain_openai import AzureOpenAIEmbeddings
|
21 |
+
# from langchain.llms import OpenAI
|
22 |
+
from langchain_community.llms import OpenAI
|
23 |
+
from langchain_openai import AzureChatOpenAI
|
24 |
+
|
25 |
+
from fns import *
|
26 |
+
|
27 |
+
st.image('local_files/synth_logo.png')
|
28 |
+
st.markdown("")
|
29 |
+
|
30 |
+
query = st.text_input('Ask me anything:',
|
31 |
+
value="What causes galaxy quenching at high redshifts?")
|
32 |
+
|
33 |
+
arxiv_id = None
|
34 |
+
top_k = st.slider('How many papers should I show?', 1, 30, 6)
|
35 |
+
|
36 |
+
retrieval_system = st.session_state.retrieval_system
|
37 |
+
results = retrieval_system.retrieve(query, arxiv_id, top_k)
|
38 |
+
|
39 |
+
aids = st.session_state.dataset['id']
|
40 |
+
titles = st.session_state.dataset['title']
|
41 |
+
auths = st.session_state.dataset['author']
|
42 |
+
bibcodes = st.session_state.dataset['bibcode']
|
43 |
+
all_keywords = st.session_state.dataset['keyword_search']
|
44 |
+
allyrs = st.session_state.dataset['year']
|
45 |
+
ret_indices = np.array([aids.index(results[i]) for i in range(top_k)])
|
46 |
+
yrs = []
|
47 |
+
for i in range(len(ret_indices)):
|
48 |
+
yr = allyrs[ret_indices[i]]
|
49 |
+
if yr < 50:
|
50 |
+
yr = yr + 2000
|
51 |
+
else:
|
52 |
+
yr = yr + 1900
|
53 |
+
yrs.append(yr)
|
54 |
+
print_titles = [titles[ret_indices[i]][0] for i in range(len(ret_indices))]
|
55 |
+
print_auths = [auths[ret_indices[i]][0]+' et al. '+str(yrs[i]) for i in range(len(ret_indices))]
|
56 |
+
print_links = ['['+bibcodes[ret_indices[i]]+'](https://ui.adsabs.harvard.edu/abs/'+bibcodes[ret_indices[i]]+'/abstract)' for i in range(len(ret_indices))]
|
57 |
+
|
58 |
+
st.divider()
|
59 |
+
st.header('top-k papers:')
|
60 |
+
|
61 |
+
for i in range(len(ret_indices)):
|
62 |
+
st.subheader(str(i+1)+'. '+print_titles[i])
|
63 |
+
st.write(print_auths[i]+' '+print_links[i])
|
64 |
+
|
65 |
+
|
66 |
+
st.divider()
|
67 |
+
st.header('top-k papers in context:')
|
68 |
+
|
69 |
+
gtkws = get_keywords(query, ret_indices, all_keywords)
|
70 |
+
|
71 |
+
umap, clbls, all_kws = load_umapcoords('local_files/arxiv_ads_corpus_coordsonly_v3.pkl')
|
72 |
+
|
73 |
+
fig = plt.figure(figsize=(12*1.8*1.2,9*2.*1.2))
|
74 |
+
im = plt.imread('local_files/astro_worldmap.png')
|
75 |
+
implot = plt.imshow(im,)
|
76 |
+
|
77 |
+
xax = (umap[0:,1]-np.amin(umap[0:,1]))+.0
|
78 |
+
xax = xax / np.amax(xax)
|
79 |
+
xax = xax * 1580 + 170
|
80 |
+
yax = (umap[0:,0]-np.amin(umap[0:,0]))+.0
|
81 |
+
yax = yax / np.amax(yax)
|
82 |
+
yax = (np.amax(yax)-yax) * 1700 + 30
|
83 |
+
# plt.scatter(xax, yax,s=2,alpha=0.7,c='k')
|
84 |
+
|
85 |
+
for i in range(np.amax(clbls)):
|
86 |
+
|
87 |
+
clust_ids = np.arange(len(clbls))[clbls == i]
|
88 |
+
clust_centroid = (np.median(xax[clust_ids]),np.median(yax[clust_ids]))
|
89 |
+
# plt.text(clust_centroid[1], clust_centroid[0], all_kws[i],fontsize=9,ha="center", va="center",
|
90 |
+
# bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.3',alpha=0.3))
|
91 |
+
plt.text(clust_centroid[0], clust_centroid[1], all_kws[i],fontsize=9,ha="center", va="center",
|
92 |
+
fontfamily='serif',color='w',
|
93 |
+
bbox=dict(facecolor='k', edgecolor='none', boxstyle='round,pad=0.1',alpha=0.3))
|
94 |
+
|
95 |
+
plt.scatter(xax[ret_indices], yax[ret_indices], c='k',s=300,zorder=100)
|
96 |
+
plt.scatter(xax[ret_indices], yax[ret_indices], c='firebrick',s=100,zorder=101)
|
97 |
+
plt.scatter(xax[ret_indices[0]], yax[ret_indices[0]], c='k',s=300,zorder=101)
|
98 |
+
plt.scatter(xax[ret_indices[0]], yax[ret_indices[0]], c='w',s=100,zorder=101)
|
99 |
+
|
100 |
+
tempx = plt.xlim(); tempy = plt.ylim()
|
101 |
+
plt.text(0.012*tempx[1], (0.012+0.03)*tempy[0], 'The world of astronomy literature',fontsize=36, fontfamily='serif')
|
102 |
+
plt.text(0.012*tempx[1], (0.012+0.06)*tempy[0], 'Query: '+query,fontsize=18, fontfamily='serif')
|
103 |
+
plt.text(0.012*tempx[1], (0.012+0.08)*tempy[0], gtkws,fontsize=18, fontfamily='serif', va='top')
|
104 |
+
plt.axis('off')
|
105 |
+
st.pyplot(fig, transparent = True, bbox_inches='tight')
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
pages/1 retrieval.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
s = time.time()
|
3 |
+
|
4 |
+
import os
|
5 |
+
import datetime
|
6 |
+
import faiss
|
7 |
+
import streamlit as st
|
8 |
+
import feedparser
|
9 |
+
import urllib
|
10 |
+
import cloudpickle as cp
|
11 |
+
import pickle
|
12 |
+
from urllib.request import urlopen
|
13 |
+
from summa import summarizer
|
14 |
+
import numpy as np
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import requests
|
17 |
+
import json
|
18 |
+
from scipy import ndimage
|
19 |
+
|
20 |
+
from langchain_openai import AzureOpenAIEmbeddings
|
21 |
+
# from langchain.llms import OpenAI
|
22 |
+
from langchain_community.llms import OpenAI
|
23 |
+
from langchain_openai import AzureChatOpenAI
|
24 |
+
|
25 |
+
from fns import *
|
26 |
+
|
27 |
+
st.image('local_files/synth_logo.png')
|
28 |
+
st.markdown("")
|
29 |
+
|
30 |
+
query = st.text_input('Ask me anything:',
|
31 |
+
value="What causes galaxy quenching at high redshifts?")
|
32 |
+
|
33 |
+
arxiv_id = None
|
34 |
+
top_k = st.slider('How many papers should I show?', 1, 30, 6)
|
35 |
+
|
36 |
+
retrieval_system = st.session_state.retrieval_system
|
37 |
+
results = retrieval_system.retrieve(query, arxiv_id, top_k)
|
38 |
+
|
39 |
+
aids = st.session_state.dataset['id']
|
40 |
+
titles = st.session_state.dataset['title']
|
41 |
+
auths = st.session_state.dataset['author']
|
42 |
+
bibcodes = st.session_state.dataset['bibcode']
|
43 |
+
all_keywords = st.session_state.dataset['keyword_search']
|
44 |
+
allyrs = st.session_state.dataset['year']
|
45 |
+
ret_indices = np.array([aids.index(results[i]) for i in range(top_k)])
|
46 |
+
yrs = []
|
47 |
+
for i in range(len(ret_indices)):
|
48 |
+
yr = allyrs[ret_indices[i]]
|
49 |
+
if yr < 50:
|
50 |
+
yr = yr + 2000
|
51 |
+
else:
|
52 |
+
yr = yr + 1900
|
53 |
+
yrs.append(yr)
|
54 |
+
print_titles = [titles[ret_indices[i]][0] for i in range(len(ret_indices))]
|
55 |
+
print_auths = [auths[ret_indices[i]][0]+' et al. '+str(yrs[i]) for i in range(len(ret_indices))]
|
56 |
+
print_links = ['['+bibcodes[ret_indices[i]]+'](https://ui.adsabs.harvard.edu/abs/'+bibcodes[ret_indices[i]]+'/abstract)' for i in range(len(ret_indices))]
|
57 |
+
|
58 |
+
st.divider()
|
59 |
+
st.header('top-k papers:')
|
60 |
+
|
61 |
+
for i in range(len(ret_indices)):
|
62 |
+
st.subheader(str(i+1)+'. '+print_titles[i])
|
63 |
+
st.write(print_auths[i]+' '+print_links[i])
|
64 |
+
|
65 |
+
|
66 |
+
st.divider()
|
67 |
+
st.header('top-k papers in context:')
|
68 |
+
|
69 |
+
gtkws = get_keywords(query, ret_indices, all_keywords)
|
70 |
+
|
71 |
+
umap, clbls, all_kws = load_umapcoords('local_files/arxiv_ads_corpus_coordsonly_v3.pkl')
|
72 |
+
|
73 |
+
fig = plt.figure(figsize=(12*1.8*1.2,9*2.*1.2))
|
74 |
+
im = plt.imread('local_files/astro_worldmap.png')
|
75 |
+
implot = plt.imshow(im,)
|
76 |
+
|
77 |
+
xax = (umap[0:,1]-np.amin(umap[0:,1]))+.0
|
78 |
+
xax = xax / np.amax(xax)
|
79 |
+
xax = xax * 1580 + 170
|
80 |
+
yax = (umap[0:,0]-np.amin(umap[0:,0]))+.0
|
81 |
+
yax = yax / np.amax(yax)
|
82 |
+
yax = (np.amax(yax)-yax) * 1700 + 30
|
83 |
+
# plt.scatter(xax, yax,s=2,alpha=0.7,c='k')
|
84 |
+
|
85 |
+
for i in range(np.amax(clbls)):
|
86 |
+
|
87 |
+
clust_ids = np.arange(len(clbls))[clbls == i]
|
88 |
+
clust_centroid = (np.median(xax[clust_ids]),np.median(yax[clust_ids]))
|
89 |
+
# plt.text(clust_centroid[1], clust_centroid[0], all_kws[i],fontsize=9,ha="center", va="center",
|
90 |
+
# bbox=dict(facecolor='white', edgecolor='black', boxstyle='round,pad=0.3',alpha=0.3))
|
91 |
+
plt.text(clust_centroid[0], clust_centroid[1], all_kws[i],fontsize=9,ha="center", va="center",
|
92 |
+
fontfamily='serif',color='w',
|
93 |
+
bbox=dict(facecolor='k', edgecolor='none', boxstyle='round,pad=0.1',alpha=0.3))
|
94 |
+
|
95 |
+
plt.scatter(xax[ret_indices], yax[ret_indices], c='k',s=300,zorder=100)
|
96 |
+
plt.scatter(xax[ret_indices], yax[ret_indices], c='firebrick',s=100,zorder=101)
|
97 |
+
plt.scatter(xax[ret_indices[0]], yax[ret_indices[0]], c='k',s=300,zorder=101)
|
98 |
+
plt.scatter(xax[ret_indices[0]], yax[ret_indices[0]], c='w',s=100,zorder=101)
|
99 |
+
|
100 |
+
tempx = plt.xlim(); tempy = plt.ylim()
|
101 |
+
plt.text(0.012*tempx[1], (0.012+0.03)*tempy[0], 'The world of astronomy literature',fontsize=36, fontfamily='serif')
|
102 |
+
plt.text(0.012*tempx[1], (0.012+0.06)*tempy[0], 'Query: '+query,fontsize=18, fontfamily='serif')
|
103 |
+
plt.text(0.012*tempx[1], (0.012+0.08)*tempy[0], gtkws,fontsize=18, fontfamily='serif', va='top')
|
104 |
+
plt.axis('off')
|
105 |
+
st.pyplot(fig, transparent = True, bbox_inches='tight')
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
matplotlib
|
2 |
+
bokeh==2.4.3
|
3 |
+
cloudpickle
|
4 |
+
scipy
|
5 |
+
summa
|
6 |
+
faiss-cpu
|
7 |
+
langchain
|
8 |
+
langchain_openai
|
9 |
+
langchain_community
|
10 |
+
langchain_core
|
11 |
+
openai
|
12 |
+
feedparser
|
13 |
+
tiktoken
|
14 |
+
chromadb
|
15 |
+
streamlit-extras
|
16 |
+
nltk
|