Spaces:
Sleeping
Sleeping
kiyer
commited on
Commit
·
ac72d36
1
Parent(s):
ea7a22d
cleaning up files
Browse files- app.py +488 -27
- arxiv_corpus/dataset_dict.json +3 -1
- arxiv_corpus/train/dataset_info.json +3 -204
- arxiv_corpus/train/state.json +3 -37
- keyword_index.json +3 -0
- local_files/pathfinder_logo.png +0 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -11,10 +11,17 @@ from datetime import datetime, date
|
|
11 |
from datasets import load_dataset, load_from_disk
|
12 |
from collections import Counter
|
13 |
|
14 |
-
import yaml, json, requests, sys, os, time
|
15 |
import concurrent.futures
|
16 |
ts = time.time()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from nltk.corpus import stopwords
|
19 |
import nltk
|
20 |
from openai import OpenAI
|
@@ -39,8 +46,6 @@ from bokeh.plotting import figure
|
|
39 |
from bokeh.models import ColumnDataSource
|
40 |
from bokeh.palettes import Spectral10
|
41 |
|
42 |
-
# try to load the data, if it doesn't work, pull from huggingface and make the pickle files
|
43 |
-
|
44 |
st.image('local_files/pathfinder_logo.png')
|
45 |
|
46 |
st.expander("About", expanded=False).write(
|
@@ -75,16 +80,21 @@ st.expander("About", expanded=False).write(
|
|
75 |
|
76 |
|
77 |
|
|
|
78 |
if 'arxiv_corpus' not in st.session_state:
|
79 |
with st.spinner('loading data...'):
|
80 |
try:
|
81 |
arxiv_corpus = load_from_disk('data/')
|
|
|
82 |
except:
|
83 |
st.write('downloading data')
|
84 |
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
|
|
|
85 |
arxiv_corpus.save_to_disk('data/')
|
86 |
st.session_state.arxiv_corpus = arxiv_corpus
|
87 |
st.toast('loaded arxiv corpus')
|
|
|
|
|
88 |
|
89 |
if 'ids' not in st.session_state:
|
90 |
st.session_state.ids = arxiv_corpus['ads_id']
|
@@ -92,24 +102,452 @@ if 'ids' not in st.session_state:
|
|
92 |
st.session_state.abstracts = arxiv_corpus['abstract']
|
93 |
st.session_state.cites = arxiv_corpus['cites']
|
94 |
st.session_state.years = arxiv_corpus['date']
|
95 |
-
st.
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
else:
|
99 |
-
|
|
|
|
|
|
|
100 |
# Function to simulate question answering (replace with actual implementation)
|
101 |
def answer_question(question, keywords, toggles, method, question_type):
|
102 |
# Simulated answer (replace with actual logic)
|
103 |
-
return f"Answer to '{question}' using method {method} for {question_type} question."
|
|
|
104 |
|
105 |
-
|
106 |
-
def get_papers():
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return pd.DataFrame({
|
109 |
-
'Title':
|
110 |
-
'Relevance':
|
|
|
111 |
})
|
112 |
|
|
|
113 |
# Function to create embedding plot (replace with actual implementation)
|
114 |
def create_embedding_plot():
|
115 |
# Simulated embedding data (replace with actual embedding calculation)
|
@@ -134,14 +572,24 @@ def estimate_consensus():
|
|
134 |
# Simulated consensus estimation (replace with actual calculation)
|
135 |
return 0.75
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
# Streamlit app
|
138 |
def main():
|
139 |
|
140 |
# st.title("Question Answering App")
|
|
|
141 |
|
142 |
# Sidebar (Inputs)
|
143 |
st.sidebar.header("Inputs")
|
144 |
-
question = st.sidebar.text_input("Enter your question:")
|
145 |
extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
|
146 |
|
147 |
st.sidebar.subheader("Toggles")
|
@@ -151,52 +599,65 @@ def main():
|
|
151 |
|
152 |
method = st.sidebar.radio("Choose a method:", ["h1", "h2", "h3"])
|
153 |
question_type = st.sidebar.selectbox("Select question type:", ["Type 1", "Type 2", "Type 3"])
|
154 |
-
store_output = st.sidebar.checkbox("Store the output")
|
155 |
|
156 |
-
|
|
|
157 |
|
158 |
# Main page (Outputs)
|
|
|
|
|
|
|
|
|
159 |
if submit_button:
|
160 |
# Process inputs
|
161 |
keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
|
162 |
toggles = {'A': toggle_a, 'B': toggle_b, 'C': toggle_c}
|
163 |
|
164 |
# Generate outputs
|
165 |
-
answer = answer_question(question, keywords, toggles, method, question_type)
|
166 |
-
papers_df = get_papers()
|
167 |
embedding_plot = create_embedding_plot()
|
168 |
triggered_keywords = extract_keywords(question)
|
169 |
consensus = estimate_consensus()
|
170 |
|
171 |
-
# Display outputs
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
col1, col2 = st.columns(2)
|
175 |
|
176 |
with col1:
|
177 |
-
st.subheader("Answer")
|
178 |
-
st.write(answer)
|
179 |
|
180 |
-
st.subheader("
|
181 |
-
st.
|
182 |
|
183 |
st.subheader("Triggered Keywords")
|
184 |
st.write(", ".join(triggered_keywords))
|
185 |
|
186 |
with col2:
|
187 |
-
st.subheader("Embedding Map")
|
188 |
-
st.bokeh_chart(embedding_plot)
|
189 |
|
190 |
st.subheader("Question Type")
|
191 |
st.write(question_type)
|
192 |
|
193 |
st.subheader("Consensus Estimate")
|
194 |
st.write(f"{consensus:.2%}")
|
195 |
-
|
196 |
-
|
197 |
-
st.
|
|
|
|
|
|
|
198 |
else:
|
199 |
st.info("Use the sidebar to input parameters and submit to see results.")
|
|
|
|
|
|
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
main()
|
|
|
11 |
from datasets import load_dataset, load_from_disk
|
12 |
from collections import Counter
|
13 |
|
14 |
+
import yaml, json, requests, sys, os, time
|
15 |
import concurrent.futures
|
16 |
ts = time.time()
|
17 |
|
18 |
+
|
19 |
+
anthropic_key = "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"
|
20 |
+
# anthropic_client = anthropic.Anthropic(api_key=anthropic_key)
|
21 |
+
|
22 |
+
openai_key = "sk-None-TMT98W6ksCIYY6w0UI66T3BlbkFJva1LamMQXbenkcnYqvs6"
|
23 |
+
# openai_client = EmbeddingClient(OpenAI(api_key=openai_key))
|
24 |
+
|
25 |
from nltk.corpus import stopwords
|
26 |
import nltk
|
27 |
from openai import OpenAI
|
|
|
46 |
from bokeh.models import ColumnDataSource
|
47 |
from bokeh.palettes import Spectral10
|
48 |
|
|
|
|
|
49 |
st.image('local_files/pathfinder_logo.png')
|
50 |
|
51 |
st.expander("About", expanded=False).write(
|
|
|
80 |
|
81 |
|
82 |
|
83 |
+
|
84 |
if 'arxiv_corpus' not in st.session_state:
|
85 |
with st.spinner('loading data...'):
|
86 |
try:
|
87 |
arxiv_corpus = load_from_disk('data/')
|
88 |
+
arxiv_corpus.add_faiss_index('embed')
|
89 |
except:
|
90 |
st.write('downloading data')
|
91 |
arxiv_corpus = load_dataset('kiyer/pathfinder_arxiv_data',split='train')
|
92 |
+
arxiv_corpus.add_faiss_index('embed')
|
93 |
arxiv_corpus.save_to_disk('data/')
|
94 |
st.session_state.arxiv_corpus = arxiv_corpus
|
95 |
st.toast('loaded arxiv corpus')
|
96 |
+
else:
|
97 |
+
arxiv_corpus = st.session_state.arxiv_corpus
|
98 |
|
99 |
if 'ids' not in st.session_state:
|
100 |
st.session_state.ids = arxiv_corpus['ads_id']
|
|
|
102 |
st.session_state.abstracts = arxiv_corpus['abstract']
|
103 |
st.session_state.cites = arxiv_corpus['cites']
|
104 |
st.session_state.years = arxiv_corpus['date']
|
105 |
+
st.session_state.kws = arxiv_corpus['keywords']
|
106 |
+
st.toast('done caching. time taken: %.2f sec' %(time.time()-ts))
|
107 |
|
108 |
+
|
109 |
+
#----------------------------------------------------------------
|
110 |
+
|
111 |
+
class Filter():
|
112 |
+
def filter(self, query: str, arxiv_id: str) -> List[str]:
|
113 |
+
pass
|
114 |
+
|
115 |
+
class CitationFilter(Filter): # can do it with all metadata
|
116 |
+
def __init__(self, corpus):
|
117 |
+
self.corpus = corpus
|
118 |
+
ids = ids
|
119 |
+
cites = cites
|
120 |
+
self.citation_counts = {ids[i]: cites[i] for i in range(len(ids))}
|
121 |
+
|
122 |
+
def citation_weight(self, x, shift, scale):
|
123 |
+
return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function
|
124 |
+
|
125 |
+
def filter(self, doc_scores, weight = 0.1): # additive weighting
|
126 |
+
citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
|
127 |
+
cmean, cstd = np.median(citation_count), np.std(citation_count)
|
128 |
+
citation_score = self.citation_weight(citation_count, cmean, cstd)
|
129 |
+
|
130 |
+
for i, doc in enumerate(doc_scores):
|
131 |
+
doc_scores[i][2] += weight * citation_score[i]
|
132 |
+
|
133 |
+
class DateFilter(Filter): # include time weighting eventually
|
134 |
+
def __init__(self, document_dates):
|
135 |
+
self.document_dates = document_dates
|
136 |
+
|
137 |
+
def parse_date(self, arxiv_id: str) -> datetime: # only for documents
|
138 |
+
if arxiv_id.startswith('astro-ph'):
|
139 |
+
arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
|
140 |
+
try:
|
141 |
+
year = int("20" + arxiv_id[:2])
|
142 |
+
month = int(arxiv_id[2:4])
|
143 |
+
except:
|
144 |
+
year = 2023
|
145 |
+
month = 1
|
146 |
+
return date(year, month, 1)
|
147 |
+
|
148 |
+
def weight(self, time, shift, scale):
|
149 |
+
return 1 / (1 + np.exp((time - shift) / scale))
|
150 |
+
|
151 |
+
def evaluate_filter(self, year, filter_string):
|
152 |
+
try:
|
153 |
+
# Use ast.literal_eval to safely evaluate the expression
|
154 |
+
result = eval(filter_string, {"__builtins__": None}, {"year": year})
|
155 |
+
return result
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error evaluating filter: {e}")
|
158 |
+
return False
|
159 |
+
|
160 |
+
def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
|
161 |
+
filtered = []
|
162 |
+
|
163 |
+
if boolean_date is not None:
|
164 |
+
boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
|
165 |
+
for doc in docs:
|
166 |
+
if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
|
167 |
+
filtered.append(doc)
|
168 |
+
|
169 |
+
else:
|
170 |
+
if min_date == None: min_date = date(1990, 1, 1)
|
171 |
+
if max_date == None: max_date = date(2024, 7, 3)
|
172 |
+
|
173 |
+
for doc in docs:
|
174 |
+
if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
|
175 |
+
filtered.append(doc)
|
176 |
+
|
177 |
+
if time_score is not None: # apply time weighting
|
178 |
+
for i, item in enumerate(filtered):
|
179 |
+
time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
|
180 |
+
filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)
|
181 |
+
|
182 |
+
return filtered
|
183 |
+
|
184 |
+
class KeywordFilter(Filter):
|
185 |
+
def __init__(self, corpus,
|
186 |
+
remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):
|
187 |
+
|
188 |
+
self.index_path = 'keyword_index.json'
|
189 |
+
# self.metadata = metadata
|
190 |
+
self.remove_capitals = remove_capitals
|
191 |
+
self.ne_only = ne_only
|
192 |
+
self.stopwords = set(stopwords.words('english'))
|
193 |
+
self.verbose = verbose
|
194 |
+
self.index = None
|
195 |
+
self.kws = st.session_state.kws
|
196 |
+
self.ids = st.session_state.ids
|
197 |
+
self.titles = st.session_state.titles
|
198 |
+
|
199 |
+
self.load_or_build_index()
|
200 |
+
|
201 |
+
def preprocess_text(self, text: str) -> str:
|
202 |
+
text = ''.join(char for char in text if char.isalnum() or char.isspace())
|
203 |
+
if self.remove_capitals: text = text.lower()
|
204 |
+
return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)
|
205 |
+
|
206 |
+
def build_index(self): # include the title in the index
|
207 |
+
print("Building index...")
|
208 |
+
self.index = {}
|
209 |
+
|
210 |
+
for i in range(len(self.kws)):
|
211 |
+
paper = self.ids[i]
|
212 |
+
title = self.titles[i]
|
213 |
+
title_keywords = set()
|
214 |
+
for keyword in set(self.kws[i]) | title_keywords:
|
215 |
+
term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
|
216 |
+
if term not in self.index:
|
217 |
+
self.index[term] = []
|
218 |
+
self.index[term].append(self.ids[i])
|
219 |
+
|
220 |
+
with open(self.index_path, 'w') as f:
|
221 |
+
json.dump(self.index, f)
|
222 |
+
|
223 |
+
def load_index(self):
|
224 |
+
print("Loading existing index...")
|
225 |
+
with open(self.index_path, 'rb') as f:
|
226 |
+
self.index = json.load(f)
|
227 |
+
|
228 |
+
print("Index loaded successfully.")
|
229 |
+
|
230 |
+
def load_or_build_index(self):
|
231 |
+
if os.path.exists(self.index_path):
|
232 |
+
self.load_index()
|
233 |
+
else:
|
234 |
+
self.build_index()
|
235 |
+
|
236 |
+
def parse_doc(self, doc):
|
237 |
+
local_kws = []
|
238 |
+
|
239 |
+
for phrase in doc._.phrases:
|
240 |
+
local_kws.append(phrase.text.lower())
|
241 |
+
|
242 |
+
return [self.preprocess_text(word) for word in local_kws]
|
243 |
+
|
244 |
+
def get_propn(self, doc):
|
245 |
+
result = []
|
246 |
+
|
247 |
+
working_str = ''
|
248 |
+
for token in doc:
|
249 |
+
if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
|
250 |
+
if working_str != '':
|
251 |
+
result.append(working_str.strip())
|
252 |
+
working_str = ''
|
253 |
+
|
254 |
+
if(token.pos_ == "PROPN"):
|
255 |
+
working_str += token.text + ' '
|
256 |
+
|
257 |
+
if working_str != '': result.append(working_str.strip())
|
258 |
+
|
259 |
+
return [self.preprocess_text(word) for word in result]
|
260 |
+
|
261 |
+
def filter(self, query: str, doc_ids = None):
|
262 |
+
doc = nlp(query)
|
263 |
+
query_keywords = self.parse_doc(doc)
|
264 |
+
nouns = self.get_propn(doc)
|
265 |
+
if self.verbose: print('keywords:', query_keywords)
|
266 |
+
if self.verbose: print('proper nouns:', nouns)
|
267 |
+
|
268 |
+
filtered = set()
|
269 |
+
if len(query_keywords) > 0 and not self.ne_only:
|
270 |
+
for keyword in query_keywords:
|
271 |
+
if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])
|
272 |
+
|
273 |
+
if len(nouns) > 0:
|
274 |
+
ne_results = set()
|
275 |
+
for noun in nouns:
|
276 |
+
if noun in self.index.keys(): ne_results |= set(self.index[noun])
|
277 |
+
|
278 |
+
if self.ne_only: filtered = ne_results # keep only named entity results
|
279 |
+
else: filtered &= ne_results # take the intersection
|
280 |
+
|
281 |
+
if doc_ids is not None: filtered &= doc_ids # apply filter to results
|
282 |
+
return filtered
|
283 |
+
|
284 |
+
class EmbeddingRetrievalSystem():
|
285 |
+
|
286 |
+
def __init__(self, weight_citation = False, weight_date = False, weight_keywords = False):
|
287 |
+
|
288 |
+
self.ids = st.session_state.ids
|
289 |
+
self.years = st.session_state.years
|
290 |
+
self.abstract = st.session_state.abstracts
|
291 |
+
self.client = OpenAI(api_key = openai_key)
|
292 |
+
self.embed_model = "text-embedding-3-small"
|
293 |
+
self.dataset = arxiv_corpus
|
294 |
+
self.kws = st.session_state.kws
|
295 |
+
|
296 |
+
self.weight_citation = weight_citation
|
297 |
+
self.weight_date = weight_date
|
298 |
+
self.weight_keywords = weight_keywords
|
299 |
+
self.id_to_index = {self.ids[i]: i for i in range(len(self.ids))}
|
300 |
+
|
301 |
+
# self.citation_filter = CitationFilter(self.dataset)
|
302 |
+
# self.date_filter = DateFilter(self.dataset['date'])
|
303 |
+
self.keyword_filter = KeywordFilter(corpus=self.dataset, remove_capitals=True)
|
304 |
+
|
305 |
+
def parse_date(self, id):
|
306 |
+
# indexval = np.where(self.ids == id)[0][0]
|
307 |
+
indexval = id
|
308 |
+
return self.years[indexval]
|
309 |
+
|
310 |
+
def make_embedding(self, text):
|
311 |
+
str_embed = self.client.embeddings.create(input = [text], model = self.embed_model).data[0].embedding
|
312 |
+
return str_embed
|
313 |
+
|
314 |
+
def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
|
315 |
+
embeddings = self.client.embeddings.create(input=texts, model=self.embed_model).data
|
316 |
+
return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]
|
317 |
+
|
318 |
+
def init_filters(self):
|
319 |
+
|
320 |
+
self.citation_filter = []
|
321 |
+
self.date_filter = []
|
322 |
+
self.keyword_filter = []
|
323 |
+
|
324 |
+
def get_query_embedding(self, query):
|
325 |
+
return self.make_embedding(query)
|
326 |
+
|
327 |
+
def analyze_temporal_query(self, query):
|
328 |
+
return
|
329 |
+
|
330 |
+
def calc_faiss(self, query_embedding, top_k = 100):
|
331 |
+
# xq = query_embedding.reshape(-1,1).T.astype('float32')
|
332 |
+
# D, I = self.index.search(xq, top_k)
|
333 |
+
# return I[0], D[0]
|
334 |
+
tmp = self.dataset.search('embed',query_embedding, k=top_k)
|
335 |
+
return [tmp.indices, tmp.scores]
|
336 |
+
|
337 |
+
def rank_and_filter(self, query, query_embedding, query_date, top_k = 10, return_scores=False, time_result=None):
|
338 |
+
|
339 |
+
|
340 |
+
topk_indices, similarities = self.calc_faiss(np.array(query_embedding), top_k = 300)
|
341 |
+
|
342 |
+
if self.weight_keywords:
|
343 |
+
keyword_matches = self.keyword_filter.filter(query)
|
344 |
+
kw_indices = np.zeros_like(similarities)
|
345 |
+
for s in keyword_matches:
|
346 |
+
if self.id_to_index[s] in topk_indices:
|
347 |
+
# print('yes', self.id_to_index[s], topk_indices[np.where(topk_indices == self.id_to_index[s])[0]])
|
348 |
+
similarities[np.where(topk_indices == self.id_to_index[s])[0]] = similarities[np.where(topk_indices == self.id_to_index[s])[0]] * 10.
|
349 |
+
similarities = similarities / 10.
|
350 |
+
|
351 |
+
filtered_results = [[topk_indices[i], similarities[i]] for i in range(len(similarities))]
|
352 |
+
top_results = sorted(filtered_results, key=lambda x: x[1], reverse=True)[:top_k]
|
353 |
+
|
354 |
+
if return_scores:
|
355 |
+
return {doc[0]: doc[1] for doc in top_results}
|
356 |
+
|
357 |
+
# Only keep the document IDs
|
358 |
+
top_results = [doc[0] for doc in top_results]
|
359 |
+
return top_results
|
360 |
+
|
361 |
+
def retrieve(self, query, top_k, time_result=None, query_date = None, return_scores = False):
|
362 |
+
|
363 |
+
query_embedding = self.get_query_embedding(query)
|
364 |
+
|
365 |
+
# Judge time relevance
|
366 |
+
if time_result is None:
|
367 |
+
if self.weight_date:
|
368 |
+
time_result, time_taken = self.analyze_temporal_query(query, self.anthropic_client)
|
369 |
+
else:
|
370 |
+
time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
|
371 |
+
|
372 |
+
top_results = self.rank_and_filter(query,
|
373 |
+
query_embedding,
|
374 |
+
query_date,
|
375 |
+
top_k,
|
376 |
+
return_scores = return_scores,
|
377 |
+
time_result = time_result)
|
378 |
+
|
379 |
+
return top_results
|
380 |
+
|
381 |
+
class HydeRetrievalSystem(EmbeddingRetrievalSystem):
|
382 |
+
def __init__(self, generation_model: str = "claude-3-haiku-20240307",
|
383 |
+
embedding_model: str = "text-embedding-3-small",
|
384 |
+
temperature: float = 0.5,
|
385 |
+
max_doclen: int = 500,
|
386 |
+
generate_n: int = 1,
|
387 |
+
embed_query = True,
|
388 |
+
conclusion = False, **kwargs):
|
389 |
+
|
390 |
+
# Handle the kwargs for the superclass init -- filters/citation weighting
|
391 |
+
super().__init__(**kwargs)
|
392 |
+
|
393 |
+
if max_doclen * generate_n > 8191:
|
394 |
+
raise ValueError("Too many tokens. Please reduce max_doclen or generate_n.")
|
395 |
+
|
396 |
+
self.embedding_model = embedding_model
|
397 |
+
self.generation_model = generation_model
|
398 |
+
|
399 |
+
# HYPERPARAMETERS
|
400 |
+
self.temperature = temperature # generation temperature
|
401 |
+
self.max_doclen = max_doclen # max tokens for generation
|
402 |
+
self.generate_n = generate_n # how many documents
|
403 |
+
self.embed_query = embed_query # embed the query vector?
|
404 |
+
self.conclusion = conclusion # generate conclusion as well?
|
405 |
+
|
406 |
+
self.anthropic_key = anthropic_key
|
407 |
+
self.generation_client = anthropic.Anthropic(api_key = self.anthropic_key)
|
408 |
+
|
409 |
+
def retrieve(self, query: str, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
|
410 |
+
if time_result is None:
|
411 |
+
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
|
412 |
+
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
|
413 |
+
|
414 |
+
docs = self.generate_docs(query)
|
415 |
+
doc_embeddings = self.embed_docs(docs)
|
416 |
+
|
417 |
+
if self.embed_query:
|
418 |
+
query_emb = self.embed_docs([query])[0]
|
419 |
+
doc_embeddings.append(query_emb)
|
420 |
+
|
421 |
+
embedding = np.mean(np.array(doc_embeddings), axis = 0)
|
422 |
+
|
423 |
+
top_results = self.rank_and_filter(query, embedding, query_date=None, top_k = top_k, return_scores = return_scores, time_result = time_result)
|
424 |
+
|
425 |
+
return top_results
|
426 |
+
|
427 |
+
def generate_doc(self, query: str):
|
428 |
+
prompt = """You are an expert astronomer. Given a scientific query, generate the abstract"""
|
429 |
+
if self.conclusion:
|
430 |
+
prompt += " and conclusion"
|
431 |
+
prompt += """ of an expert-level research paper
|
432 |
+
that answers the question. Stick to a maximum length of {} tokens and return just the text of the abstract and conclusion.
|
433 |
+
Do not include labels for any section. Use research-specific jargon.""".format(self.max_doclen)
|
434 |
+
|
435 |
+
|
436 |
+
message = self.generation_client.messages.create(
|
437 |
+
model = self.generation_model,
|
438 |
+
max_tokens = self.max_doclen,
|
439 |
+
temperature = self.temperature,
|
440 |
+
system = prompt,
|
441 |
+
messages=[{ "role": "user",
|
442 |
+
"content": [{"type": "text", "text": query,}] }]
|
443 |
+
)
|
444 |
+
|
445 |
+
return message.content[0].text
|
446 |
+
|
447 |
+
def generate_docs(self, query: str):
|
448 |
+
docs = []
|
449 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
450 |
+
future_to_query = {executor.submit(self.generate_doc, query): query for i in range(self.generate_n)}
|
451 |
+
for future in concurrent.futures.as_completed(future_to_query):
|
452 |
+
query = future_to_query[future]
|
453 |
+
try:
|
454 |
+
data = future.result()
|
455 |
+
docs.append(data)
|
456 |
+
except Exception as exc:
|
457 |
+
pass
|
458 |
+
return docs
|
459 |
+
|
460 |
+
def embed_docs(self, docs: List[str]):
|
461 |
+
return self.embed_batch(docs)
|
462 |
+
|
463 |
+
class HydeCohereRetrievalSystem(HydeRetrievalSystem):
|
464 |
+
def __init__(self, **kwargs):
|
465 |
+
super().__init__(**kwargs)
|
466 |
+
|
467 |
+
self.cohere_key = "Of1MjzFjGmvzBAqdvNHTQLkAjecPcOKpiIPAnFMn"
|
468 |
+
self.cohere_client = cohere.Client(self.cohere_key)
|
469 |
+
|
470 |
+
def retrieve(self, query: str,
|
471 |
+
top_k: int = 10,
|
472 |
+
rerank_top_k: int = 250,
|
473 |
+
return_scores = False, time_result = None,
|
474 |
+
reweight = False) -> List[Tuple[str, str, float]]:
|
475 |
+
|
476 |
+
if time_result is None:
|
477 |
+
if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
|
478 |
+
else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}
|
479 |
+
|
480 |
+
top_results = super().retrieve(query, top_k = rerank_top_k, time_result = time_result)
|
481 |
+
|
482 |
+
# doc_texts = self.get_document_texts(top_results)
|
483 |
+
# docs_for_rerank = [f"Abstract: {doc['abstract']}\nConclusions: {doc['conclusions']}" for doc in doc_texts]
|
484 |
+
docs_for_rerank = [self.abstract[i] for i in top_results]
|
485 |
+
|
486 |
+
if len(docs_for_rerank) == 0:
|
487 |
+
return []
|
488 |
+
|
489 |
+
reranked_results = self.cohere_client.rerank(
|
490 |
+
query=query,
|
491 |
+
documents=docs_for_rerank,
|
492 |
+
model='rerank-english-v3.0',
|
493 |
+
top_n=top_k
|
494 |
+
)
|
495 |
+
|
496 |
+
final_results = []
|
497 |
+
for result in reranked_results.results:
|
498 |
+
doc_id = top_results[result.index]
|
499 |
+
doc_text = docs_for_rerank[result.index]
|
500 |
+
score = float(result.relevance_score)
|
501 |
+
final_results.append([doc_id, "", score])
|
502 |
+
|
503 |
+
if reweight:
|
504 |
+
if time_result['has_temporal_aspect']:
|
505 |
+
final_results = self.date_filter.filter(final_results, time_score = time_result['expected_recency_weight'])
|
506 |
+
|
507 |
+
if self.weight_citation: self.citation_filter.filter(final_results)
|
508 |
|
509 |
+
if return_scores:
|
510 |
+
return {result[0]: result[2] for result in final_results}
|
511 |
+
|
512 |
+
return [doc[0] for doc in final_results]
|
513 |
+
|
514 |
+
def embed_docs(self, docs: List[str]):
|
515 |
+
return self.embed_batch(docs)
|
516 |
+
|
517 |
+
# ----------------------------------------------------------------
|
518 |
+
|
519 |
+
|
520 |
+
if 'ec' not in st.session_state:
|
521 |
+
ec = EmbeddingRetrievalSystem(weight_keywords=True)
|
522 |
+
st.session_state.ec = ec
|
523 |
+
st.toast('loaded retrieval system')
|
524 |
else:
|
525 |
+
ec = st.session_state.ec
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
# Function to simulate question answering (replace with actual implementation)
|
530 |
def answer_question(question, keywords, toggles, method, question_type):
|
531 |
# Simulated answer (replace with actual logic)
|
532 |
+
# return f"Answer to '{question}' using method {method} for {question_type} question."
|
533 |
+
return run_ret(question, 10)
|
534 |
|
535 |
+
|
536 |
+
def get_papers(ids):
|
537 |
+
|
538 |
+
papers, scores, links = [], [], []
|
539 |
+
for i in ids:
|
540 |
+
papers.append(st.session_state.titles[i])
|
541 |
+
scores.append(ids[i])
|
542 |
+
links.append('https://ui.adsabs.harvard.edu/abs/'+st.session_state.arxiv_corpus['bibcode'][i]+'/abstract')
|
543 |
+
|
544 |
return pd.DataFrame({
|
545 |
+
'Title': papers,
|
546 |
+
'Relevance': scores,
|
547 |
+
'Link': links
|
548 |
})
|
549 |
|
550 |
+
|
551 |
# Function to create embedding plot (replace with actual implementation)
|
552 |
def create_embedding_plot():
|
553 |
# Simulated embedding data (replace with actual embedding calculation)
|
|
|
572 |
# Simulated consensus estimation (replace with actual calculation)
|
573 |
return 0.75
|
574 |
|
575 |
+
def run_ret(query, top_k):
|
576 |
+
rs = ec.retrieve(query, top_k, return_scores=True)
|
577 |
+
output_str = ''
|
578 |
+
for i in rs:
|
579 |
+
if rs[i] > 0.5:
|
580 |
+
output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
|
581 |
+
else:
|
582 |
+
output_str = output_str + '---> ' + st.session_state.titles[i] + '(score: %.2f) \n' %rs[i]
|
583 |
+
return output_str, rs
|
584 |
+
|
585 |
# Streamlit app
|
586 |
def main():
|
587 |
|
588 |
# st.title("Question Answering App")
|
589 |
+
|
590 |
|
591 |
# Sidebar (Inputs)
|
592 |
st.sidebar.header("Inputs")
|
|
|
593 |
extra_keywords = st.sidebar.text_input("Enter extra keywords (comma-separated):")
|
594 |
|
595 |
st.sidebar.subheader("Toggles")
|
|
|
599 |
|
600 |
method = st.sidebar.radio("Choose a method:", ["h1", "h2", "h3"])
|
601 |
question_type = st.sidebar.selectbox("Select question type:", ["Type 1", "Type 2", "Type 3"])
|
602 |
+
# store_output = st.sidebar.checkbox("Store the output")
|
603 |
|
604 |
+
|
605 |
+
store_output = st.sidebar.button("Save output")
|
606 |
|
607 |
# Main page (Outputs)
|
608 |
+
|
609 |
+
question = st.text_input("Ask me anything:")
|
610 |
+
submit_button = st.button("Submit")
|
611 |
+
|
612 |
if submit_button:
|
613 |
# Process inputs
|
614 |
keywords = [kw.strip() for kw in extra_keywords.split(',')] if extra_keywords else []
|
615 |
toggles = {'A': toggle_a, 'B': toggle_b, 'C': toggle_c}
|
616 |
|
617 |
# Generate outputs
|
618 |
+
answer, rs = answer_question(question, keywords, toggles, method, question_type)
|
619 |
+
papers_df = get_papers(rs)
|
620 |
embedding_plot = create_embedding_plot()
|
621 |
triggered_keywords = extract_keywords(question)
|
622 |
consensus = estimate_consensus()
|
623 |
|
624 |
+
# Display outputs
|
625 |
+
|
626 |
+
st.subheader("Answer")
|
627 |
+
st.write(answer)
|
628 |
+
|
629 |
+
with st.expander("Papers used", expanded=True):
|
630 |
+
st.dataframe(papers_df)
|
631 |
+
|
632 |
|
633 |
col1, col2 = st.columns(2)
|
634 |
|
635 |
with col1:
|
|
|
|
|
636 |
|
637 |
+
st.subheader("Embedding Map")
|
638 |
+
st.bokeh_chart(embedding_plot)
|
639 |
|
640 |
st.subheader("Triggered Keywords")
|
641 |
st.write(", ".join(triggered_keywords))
|
642 |
|
643 |
with col2:
|
|
|
|
|
644 |
|
645 |
st.subheader("Question Type")
|
646 |
st.write(question_type)
|
647 |
|
648 |
st.subheader("Consensus Estimate")
|
649 |
st.write(f"{consensus:.2%}")
|
650 |
+
|
651 |
+
# st.subheader("Papers Used")
|
652 |
+
# st.dataframe(papers_df)
|
653 |
+
|
654 |
+
|
655 |
+
|
656 |
else:
|
657 |
st.info("Use the sidebar to input parameters and submit to see results.")
|
658 |
+
|
659 |
+
if store_output:
|
660 |
+
st.toast("Output stored successfully!")
|
661 |
|
662 |
if __name__ == "__main__":
|
663 |
main()
|
arxiv_corpus/dataset_dict.json
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c172eebfc28c1400d6be4338ce7d00191507ffb4ae64c315f039585c894df5b7
|
3 |
+
size 21
|
arxiv_corpus/train/dataset_info.json
CHANGED
@@ -1,204 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
"config_name": "default",
|
5 |
-
"dataset_name": "astro_paper_corpus",
|
6 |
-
"dataset_size": 4128813829,
|
7 |
-
"description": "",
|
8 |
-
"download_checksums": {
|
9 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00000-of-00009.parquet": {
|
10 |
-
"num_bytes": 240072323,
|
11 |
-
"checksum": null
|
12 |
-
},
|
13 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00001-of-00009.parquet": {
|
14 |
-
"num_bytes": 235851056,
|
15 |
-
"checksum": null
|
16 |
-
},
|
17 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00002-of-00009.parquet": {
|
18 |
-
"num_bytes": 236413937,
|
19 |
-
"checksum": null
|
20 |
-
},
|
21 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00003-of-00009.parquet": {
|
22 |
-
"num_bytes": 237728419,
|
23 |
-
"checksum": null
|
24 |
-
},
|
25 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00004-of-00009.parquet": {
|
26 |
-
"num_bytes": 236710419,
|
27 |
-
"checksum": null
|
28 |
-
},
|
29 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00005-of-00009.parquet": {
|
30 |
-
"num_bytes": 239567004,
|
31 |
-
"checksum": null
|
32 |
-
},
|
33 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00006-of-00009.parquet": {
|
34 |
-
"num_bytes": 234863979,
|
35 |
-
"checksum": null
|
36 |
-
},
|
37 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00007-of-00009.parquet": {
|
38 |
-
"num_bytes": 232662046,
|
39 |
-
"checksum": null
|
40 |
-
},
|
41 |
-
"hf://datasets/JSALT2024-Astro-LLMs/astro_paper_corpus@b957a28700badb3b5f5c7af06ea77a2560ab6e46/data/train-00008-of-00009.parquet": {
|
42 |
-
"num_bytes": 237444927,
|
43 |
-
"checksum": null
|
44 |
-
}
|
45 |
-
},
|
46 |
-
"download_size": 2131314110,
|
47 |
-
"features": {
|
48 |
-
"id": {
|
49 |
-
"dtype": "string",
|
50 |
-
"_type": "Value"
|
51 |
-
},
|
52 |
-
"author": {
|
53 |
-
"feature": {
|
54 |
-
"dtype": "string",
|
55 |
-
"_type": "Value"
|
56 |
-
},
|
57 |
-
"_type": "Sequence"
|
58 |
-
},
|
59 |
-
"bibcode": {
|
60 |
-
"dtype": "string",
|
61 |
-
"_type": "Value"
|
62 |
-
},
|
63 |
-
"title": {
|
64 |
-
"feature": {
|
65 |
-
"dtype": "string",
|
66 |
-
"_type": "Value"
|
67 |
-
},
|
68 |
-
"_type": "Sequence"
|
69 |
-
},
|
70 |
-
"citation_count": {
|
71 |
-
"dtype": "int64",
|
72 |
-
"_type": "Value"
|
73 |
-
},
|
74 |
-
"aff": {
|
75 |
-
"feature": {
|
76 |
-
"dtype": "string",
|
77 |
-
"_type": "Value"
|
78 |
-
},
|
79 |
-
"_type": "Sequence"
|
80 |
-
},
|
81 |
-
"citation": {
|
82 |
-
"feature": {
|
83 |
-
"dtype": "string",
|
84 |
-
"_type": "Value"
|
85 |
-
},
|
86 |
-
"_type": "Sequence"
|
87 |
-
},
|
88 |
-
"database": {
|
89 |
-
"feature": {
|
90 |
-
"dtype": "string",
|
91 |
-
"_type": "Value"
|
92 |
-
},
|
93 |
-
"_type": "Sequence"
|
94 |
-
},
|
95 |
-
"read_count": {
|
96 |
-
"dtype": "int64",
|
97 |
-
"_type": "Value"
|
98 |
-
},
|
99 |
-
"keyword": {
|
100 |
-
"feature": {
|
101 |
-
"dtype": "string",
|
102 |
-
"_type": "Value"
|
103 |
-
},
|
104 |
-
"_type": "Sequence"
|
105 |
-
},
|
106 |
-
"reference": {
|
107 |
-
"feature": {
|
108 |
-
"dtype": "string",
|
109 |
-
"_type": "Value"
|
110 |
-
},
|
111 |
-
"_type": "Sequence"
|
112 |
-
},
|
113 |
-
"doi": {
|
114 |
-
"feature": {
|
115 |
-
"dtype": "string",
|
116 |
-
"_type": "Value"
|
117 |
-
},
|
118 |
-
"_type": "Sequence"
|
119 |
-
},
|
120 |
-
"subfolder": {
|
121 |
-
"dtype": "string",
|
122 |
-
"_type": "Value"
|
123 |
-
},
|
124 |
-
"filename": {
|
125 |
-
"dtype": "string",
|
126 |
-
"_type": "Value"
|
127 |
-
},
|
128 |
-
"introduction": {
|
129 |
-
"dtype": "string",
|
130 |
-
"_type": "Value"
|
131 |
-
},
|
132 |
-
"conclusions": {
|
133 |
-
"dtype": "string",
|
134 |
-
"_type": "Value"
|
135 |
-
},
|
136 |
-
"year": {
|
137 |
-
"dtype": "int64",
|
138 |
-
"_type": "Value"
|
139 |
-
},
|
140 |
-
"month": {
|
141 |
-
"dtype": "int64",
|
142 |
-
"_type": "Value"
|
143 |
-
},
|
144 |
-
"arxiv_id": {
|
145 |
-
"dtype": "string",
|
146 |
-
"_type": "Value"
|
147 |
-
},
|
148 |
-
"abstract": {
|
149 |
-
"dtype": "string",
|
150 |
-
"_type": "Value"
|
151 |
-
},
|
152 |
-
"failed_ids": {
|
153 |
-
"dtype": "bool",
|
154 |
-
"_type": "Value"
|
155 |
-
},
|
156 |
-
"keyword_search": {
|
157 |
-
"feature": {
|
158 |
-
"dtype": "string",
|
159 |
-
"_type": "Value"
|
160 |
-
},
|
161 |
-
"_type": "Sequence"
|
162 |
-
},
|
163 |
-
"umap_x": {
|
164 |
-
"dtype": "float32",
|
165 |
-
"_type": "Value"
|
166 |
-
},
|
167 |
-
"umap_y": {
|
168 |
-
"dtype": "float32",
|
169 |
-
"_type": "Value"
|
170 |
-
},
|
171 |
-
"clust_id": {
|
172 |
-
"dtype": "int64",
|
173 |
-
"_type": "Value"
|
174 |
-
}
|
175 |
-
},
|
176 |
-
"homepage": "",
|
177 |
-
"license": "",
|
178 |
-
"size_in_bytes": 6260127939,
|
179 |
-
"splits": {
|
180 |
-
"train": {
|
181 |
-
"name": "train",
|
182 |
-
"num_bytes": 4128813829,
|
183 |
-
"num_examples": 271544,
|
184 |
-
"shard_lengths": [
|
185 |
-
33172,
|
186 |
-
33172,
|
187 |
-
33172,
|
188 |
-
33172,
|
189 |
-
33172,
|
190 |
-
33171,
|
191 |
-
34171,
|
192 |
-
34171,
|
193 |
-
4171
|
194 |
-
],
|
195 |
-
"dataset_name": "astro_paper_corpus"
|
196 |
-
}
|
197 |
-
},
|
198 |
-
"version": {
|
199 |
-
"version_str": "0.0.0",
|
200 |
-
"major": 0,
|
201 |
-
"minor": 0,
|
202 |
-
"patch": 0
|
203 |
-
}
|
204 |
-
}
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfcc45f82340c62a77d97d2d1ba131e629a71a885273309a668a281e59745e90
|
3 |
+
size 4859
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arxiv_corpus/train/state.json
CHANGED
@@ -1,37 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
"filename": "data-00000-of-00009.arrow"
|
5 |
-
},
|
6 |
-
{
|
7 |
-
"filename": "data-00001-of-00009.arrow"
|
8 |
-
},
|
9 |
-
{
|
10 |
-
"filename": "data-00002-of-00009.arrow"
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"filename": "data-00003-of-00009.arrow"
|
14 |
-
},
|
15 |
-
{
|
16 |
-
"filename": "data-00004-of-00009.arrow"
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"filename": "data-00005-of-00009.arrow"
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"filename": "data-00006-of-00009.arrow"
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"filename": "data-00007-of-00009.arrow"
|
26 |
-
},
|
27 |
-
{
|
28 |
-
"filename": "data-00008-of-00009.arrow"
|
29 |
-
}
|
30 |
-
],
|
31 |
-
"_fingerprint": "b9db3ec46232aa87",
|
32 |
-
"_format_columns": null,
|
33 |
-
"_format_kwargs": {},
|
34 |
-
"_format_type": null,
|
35 |
-
"_output_all_columns": false,
|
36 |
-
"_split": "train"
|
37 |
-
}
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2f976bdcd9df0c87937fede4a771287e62e3dc62f1dec9ee12f066e3540043d
|
3 |
+
size 722
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
keyword_index.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dce94a21caa4aafe87e4996ae2ffa24250b82884e8ad9cf4fa2b5f50e7329e1
|
3 |
+
size 140727900
|
local_files/pathfinder_logo.png
ADDED
requirements.txt
CHANGED
@@ -14,4 +14,5 @@ feedparser
|
|
14 |
tiktoken
|
15 |
chromadb
|
16 |
streamlit-extras
|
17 |
-
nltk
|
|
|
|
14 |
tiktoken
|
15 |
chromadb
|
16 |
streamlit-extras
|
17 |
+
nltk
|
18 |
+
hickle
|