Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
import gradio as gr; print(gr.__version__) | |
# Replace with path to your ESG data (CSV or other supported format) | |
data_path = "ESG_data.csv" | |
company_ratings = [ | |
{"Company Name": "Apple Inc.", "Rating": 4.5}, | |
{"Company Name": "Amazon.com, Inc.", "Rating": 4.2}, | |
{"Company Name": "Microsoft Corporation", "Rating": 4.7}, | |
{"Company Name": "Alphabet Inc. (Google)", "Rating": 4.8}, | |
{"Company Name": "Tesla, Inc.", "Rating": 3.9}, | |
{"Company Name": "Meta Platforms Inc. (Facebook)", "Rating": 3.1}, | |
] | |
# Load ESG data | |
esg_data = pd.DataFrame(company_ratings) | |
import gradio as gr | |
import pandas as pd | |
inputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(4,"dynamic"), label="Input Data", interactive=1)] | |
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Failures"])] | |
def infer(input_dataframe): | |
return pd.DataFrame(input_dataframe) | |
gr.Interface(fn = infer, inputs = inputs, outputs = outputs, examples = [[esg_data.head(2)]]).launch() | |
# def get_esg_scores(ticker): | |
# """ | |
# Finds ESG scores for a given ticker symbol in the loaded data. | |
# Args: | |
# ticker (str): Ticker symbol of the company. | |
# Returns: | |
# pandas.DataFrame: Subset of ESG data for the ticker, | |
# containing ESG scores if found, or an empty DataFrame | |
# if not found. | |
# """ | |
# filtered_data = esg_data[esg_data["Ticker Symbol"] == ticker.upper()] | |
# return filtered_data if not filtered_data.empty else pd.DataFrame() | |
# def display_esg_scores(dataframe): | |
# """ | |
# Displays ESG scores in a table format if a DataFrame is provided, | |
# otherwise displays a message indicating no data found. | |
# Args: | |
# dataframe (pandas.DataFrame): DataFrame containing ESG scores. | |
# """ | |
# if dataframe.empty: | |
# return "No ESG data found for this ticker." | |
# else: | |
# # Select relevant ESG score columns (adjust based on your data) | |
# esg_scores = dataframe[["Ticker Symbol", "Governance Score", "Social Score", "Environmental Score"]] | |
# return gr.DataTable(dataframe=esg_scores.to_dict()) | |
# iface = gr.Interface( | |
# fn=get_esg_scores, | |
# inputs=gr.inputs.Textbox(label="Ticker Symbol"), | |
# outputs=esg_data, | |
# title="ESG Score Lookup", | |
# description="Enter a company ticker symbol to view its ESG scores (if available).", | |
# ) | |
# iface.launch() | |